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Abstract

Essays on a Discontinuity Test of Endogeneity
by
Maria Carolina Nizarala Martinez Caetano
Doctor of Philisophy in Economics
University of California, Berkeley

Professor James Powell, Chair

This dissertation develops a test of endogeneity without the need of instrumental
variables. The test ensues from the novel observation that the potentially endogenous
variable X is often of a nature such that the distribution of the unobservable @)
conditional on X and covariates Z is discontinuous in X at a known value in its
range. This relationship arises, for example, when X is subject to corner solutions,
default contracts, social norms or law imposed restrictions, and may be argued using
both economic theory and empirical evidence. The idea relies in that if X has a
continuous effect on the dependent variable Y, any discontinuity of Y that is not
accounted by the discontinuities in the covariates Z is evidence that () and Y are
dependent conditional on Z, i.e. it is evidence of the endogeneity of X.

The first part of this dissertation develops the test inside of a linear model where X
is censored. In this case the test converges under the null hypothesis of the exogeneity
of X at the rate \/n. The part includes the identification of the parameter which will
be used as a basis for the test statistics, the construction of the test statistics and
derivation of an asymptotic theory of its behavior, and finally a Monte Carlo study
where the test is compared to the score test applied to the model, which can be un-
derstood as an endogeneity test. The Monte Carlo study uses real data on the effects
of maternal smoking in birth weight, and the different versions of the discontinuity
test present identical size and power as the score test under the assumptions for the
optimality of the latter. When Z is endogenous, the score test as previously defined is
no longer optimal, and the discontinuity test performs significantly better, with gains
of up to 100% more rejections than the score test for certain levels of correlation.

The second part of this dissertation develops a theory of the discontinuity test
the endogeneity of X in the structural function f. In this case, X need not be
censored, and f need not be linear. The parameter which serves as the basis of
the test can be identified non-parametrically, and consists of the aggregation of the
discontinuities of the E(Y | X, Z) over a measure of Z. The work develops the test
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statistic of the first part as one of the cases, but then generalizes the test for the
cases when E(Y | X, Z) is nonparametric in X and separably linear in Z, and when
E(Y | X, Z) is nonparametric, but Z has finite support. In these two cases, the test
statistic is shown to converge at the univariate nonparametric rate v/nh. This part
also discusses an undersized test of the endogeneity of X when the support of its
distribution is not continuous. The part ends with a discussion of the applicability
of the test, with examples of situations where the test assumptions can be argued
naturally, and showing how this can be done in the case of the estimation of the
effects of maternal smoking in birth weight.

The third part of this dissertation is a study of endogeneity in the problem of the
estimation of the effect of maternal smoking on birth weight and on the probability
of low birth weight (LBW). It presents a discussion of the difficulties faced by the
randomized trials and instrumental variable approaches in the area. Then, it applies
the discontinuity test for a partially linear specification (linear in Z), where Z is chosen
to be the same as in the most exhaustive study using the selection on observables
assumption in the literature, Almond et al. (2005). The test finds strong evidence
of endogeneity in the structural function relating amounts smoked and birth weight,
and very weak evidence in the structural function relating amounts smoked and the
probability of LBW.
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Part 1

Discontinuity tests for endogeneity
of a censored regressor
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Chapter 1

Introduction

Semi-parametric models of simultaneous equations with censored dependent vari-
ables were first treated by Heckman (1978), Amemiya (1979), and Lee (1979). Later,
Newey (1987) considered models with endogenous explanatory variables, devising an
efficient estimation method with instrumental variables. Smith and Blundell (1987)
developed a test for exogeneity of a censored variable in a parametric model, and pro-
posed an efficient estimator under these conditions. Vella (1993) used a generalized
residuals approach (see Gourieroux et al. (1987)) in a very general model with cen-
sored (potentially endogenous) regressors, and Gaussian errors, from which he derived
an endogeneity test and an estimator. Vella (1993) briefly considered the possibil-
ity of extending the testing results to non-Gaussian models by borrowing from the
semi-parametric literature (Gallant and Nychka (1987)), and the diagnostic testing
literature (Lee (1984) and Pagan and Vella (1989)). He suggested to capture the
departures from normality by including powered up values of the generalized residu-
als in the moment condition. The properties of the resulting test are not discussed
in Vella (1993)’s article, but its form appears to be similar to the score test, whose
properties in the specific model treated in this part will be discussed in chapter 4.

This part suggests a different approach for testing the exogeneity of a censored
regressor when this regressor appears in the structural equation in the censored form,
as opposed to in the latent form. Such is the case of “corner solution” models. In
a very simple setup, where the structural equation includes only a constant and the
censored (potentially endogenous) regressor in the right hand side, the conditional
expectation of the dependent variable given the regressor shouldn’t be discontinuous
at the point of the restriction. If such discontinuity is found, it could be evidence of
the existence of an unobservable variable correlated to both the dependent variable
and the latent form of the censored regressor.

In a more general context, it is the conditional expectation of the error term in
the structural equation given the regressors that shouldn’t be discontinuous at the
censoring point. Moreover, there should exist no discontinuity at the censoring point
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Figure 1.1: Discontinuity in ) generated by censoring

. eE(Q|X* <0)

E(Q[X)

X*

of the conditional expectation of the error term when it is interacted with any function
of the controls. Section 2 presents a model in which this discontinuity is evidence of
the endogeneity of the censored regressor.

In this context, this part introduces the discontinuity tests for endogeneity, which
consistently estimate the expected value of the discontinuity at the censoring point of
the conditional expectation of the error term interacted with a function of the controls,
and test whether the true expected discontinuity is in fact zero. Any function of the
controls can be chosen, provided it satisfies the necessary moment condition expressed
in chapter 2.

The discontinuity tests are simple to implement, and don’t rely on exclusion re-
strictions or distributional assumptions. The Monte Carlo simulations presented in
chapter 4 provide evidence that, when the unobservables and the controls are corre-
lated, the discontinuity tests are significantly more efficient than two other likely tests.
When no such correlation exists, the discontinuity tests showed no loss of efficiency
when compared with the same other likely tests.
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Chapter 2

The model

The model consists of the following three equations:

where Z; is a K x 1 vector, and all other are scalar variables. Endogeneity in this
model is equivalent to § # 0. Provided E(g; | X;, Z;) = 0, and all other concerned
expectations exist, it is possible to write:

E(Y; | X, Zi) = (B+0)X; + ZF (v — 70) + 6E(X, | Xi* <0, Z)1(X; =0).  (2.4)

From 2.4, for any nontrivial function g : RX — R, two equations follow:
L E(g(Z)Y:) = (B+ 0)E(9(Z:)Xi) + E(9(Z:) Z:)" (v — m0)+
2. E(9(Z)Yi| Xi > 0) = (B+0E(g(Z) X | Xi > 0) + E(9(Z:) Z: | Xi > 0)" (7 — m9)

which show that 8 + d, v — 7d and 0E(g(Z;)E(X;" | X;" < 0,7;)1(X; = 0)) are
identifiable, whereas 0 alone is not unless further assumptions are made.

If g is such that
E(g9(Z)E(X;" | Xi* <0, Z;)1(X; = 0)) # 0,
testing whether 0 # 0 is equivalent to testing whether
SE(9(Z:)E(X;" | X;* <0,Z;)1(X; = 0)) # 0.
In particular, if P(X;* < 0) > 0 and ¢g(Z;) = 1, the condition
E(g(Z)E(X;" | X;" <0,Z;)1(X; =0)) #0
is satisfied, since E(E(X;" | X;* < 0,7Z;,)1(X; =0)) = E(X;" | X;* < 0)P(X;* <0) < 0.
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Chapter 3

Discontinuity tests of endogeneity

The discontinuity test using function g consists of the estimation of

and subsequent testing of whether this term is in fact equal to zero. This is achieved
in two steps. The first step uses only the observations for which X; > 0, regressing

. _— — T
Y; on W; = (X, ZI')T so as to obtain ¢ = (8 + 6, (y — 7§) )T. The test statistics is
then calculated using only observations for which X; = 0:

If (ZF,Q;, ;)" areii.d., and all necessary conditions of existence and invertibility
of second moments are satisfied, it is simple to show that

V(0 — SE(g(Z)E(X:* | X;* < 0,Z)1(X; = 0))) % N (0,0%(p + A) + 6%w?)  (3.1)
where

p=E(9(Z)*1(X; = 0),
A = E(g(Z:)Wil(X,; = 0)"E(W;W]1(X; > 0)) ' E(g(Z;)W;1(X; = 0))"
w? = Var(g(Z)E(X;* | X;* <0, Z)1(X; = 0)).

A formal statement and proof of this result is available in the appendix section
A.1. The variance of the estimator under Hy : 6 = 0 can be consistently estimated
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=S (Yi-Wr)? A={i=1..,nX, >0}
na i€EA

N

p= EZQ(Zi)l(Xz =0),

A:(%ﬁjg(zi)vm(xi 0>T( ZWWT (X; >o>_< znj ZYWil(X;= 0)>

i=1

In matrix notation, let M be the n x 1 vector whose it entry is M; = g(Z;)1(X; =
0), W and W be the n x (K + 1) matrices whose rows are respectively W and
WI1(X; > 0). The discontinuity test statistic can be expressed as

YT (I — WWIW)TWT)M(MT (I + WWTW)TWTM)MT (I — W(WTW)TWT)Y

Y

S

where o ~
&2 YI(I - WWTW)TWT)Y

' n—(K+1) '
This value should be compared to the critical values of the distribution F,_(x41)-
This test statistic is equivalent to an IV test of whether the coefficient of a regressor »;
in a regression of Y; on W; and #; is zero, using W;1(X; > 0) and M; = g(Z;)1(X; = 0)

as instruments. The choice of 7; is arbitrary, as long as MT(I — W(WTW)~"'"W7T)y is
invertible for the available sample.
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Chapter 4

Monte Carlo

The first design presented here intends to observe the behavior of the version of
the discontinuity test with g(Z;) = 1 in a real dataset. The discontinuity test using
this function measures the average discontinuity of equation (2.4) at X; = 0 after
controlling for Z;. The comparison benchmark is the score test.

The dataset chosen is the National Maternal and Infant Health Survey, 1988.
The data (5461 observations) is assumed to satisfy equations (2.1) to (2.3), with Y;
being birth weight, X; being cigarettes smoked per day during pregnancy (censored
below zero), and Z; a vector including a constant and 36 covariates. The covariates
include mother’s age, education, marital status, race, foreign status, father’s age,
education and race, number of prenatal visits, date of first prenatal care, first born
dummy, number of previous live births, number of previous births where newborn
died, interval since last live birth, alcohol use, residence in metropolitan area, delivery
with doctor, delivery in hospital, and month of birth. The specification is based in
Almond et al. (2005). The variates ¢; and @; are assumed to be independent and
normally distributed with respective variances o2 and 03.

The model was then calibrated so that the parameters used in the design preserved
the moments of the population. The design parameters m and 05 where calculated
using a tobit regression of X; on Z;. This also yielded an estimated Q; = X; — ZI'w
for all observations such that X; > 0. To each level of correlation (p) between the
unobservables in equation (2.1), §Q); +¢;, and the unobservables in equation (2.2), @,
corresponds a different value of § = §(p). B(p), 7(p) and o2(p) were then calculated
through an OLS regression of Y; — 6(p)Q; on X; and Z;, using only observations for

which X; > 0.
Let
T (2T
M; = (X; — ZIH)1(X; > 0) — 6 M | — 1(X; = 0),
Oq

the score test in this design is equivalent to a t-test of whether the coefficient of the
term M; in an OLS regression of Y; on X;, Z; and M, is equal to zero. 7 and &, are
obtained through a tobit regression of X; on Z;, and A is the inverse Mills’ Ratio.
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For each sample size of 100, 200, 400 and 1000 observations, the values Z; were
chosen through resampling from the the original population. The values of ¢; and Q);
were taken from a joint normal distribution with variances given by the calibration
process above, and no correlation. There were 10,000 repetitions. For each obser-
vation and repetition, Z;, ¢; and @); generate all of the other variables through the
design model. For small samples (notably 100 and 200 observations), it was necessary
to correct for the degrees of freedom in each test, since both tests were oversized when
using the critical values of the respective asymptotic distributions. The tables below
show the proportion of rejections in the t-test versions of the discontinuity and the
score tests for each correlation value p at a 5% significance level.

Table 4.1: Rejections when Z; and (); are independent

Exp.1: 100 obs.
P ‘ Disc. Score

Exp.2: 200 obs.
P ‘ Disc. Score

0.00
0.10
0.25
0.50
0.75
0.90

4.9
5.1
6.3
12.6
36.4
79.0

5.0
5.1
6.8
13.4
35.8
74.4

0.00
0.10
0.25
0.50
0.75
0.90

5.0
2.5
9.5
294
78.7
99.5

2.0
2.6
9.7
29.8
78.0
99.3

Exp.3: 400 obs.
p ‘ Disc. Score

Exp.4: 1000 obs.
p ‘ Disc. Score

0.00
0.10
0.25
0.50
0.75
0.90

5.1
6.7
16.6
59.1
98.7
100.0

5.0
6.8
16.8
98.5
98.6
100.0

0.00
0.10
0.25
0.50
0.75
0.90

5.3
10.2
38.6
94.9

100.0
100.0

2.3
10.1
38.5
94.8

100.0
100.0

Proportion of rejections of the null hypothesis (Hy: § = 0) at the 5% significance level out of 10,000

repetitions.

The results show that the discontinuity test has the right (corrected) size. The
power of the two tests is virtually identical at all correlation levels, even for small

sample sizes.
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If Q; is correlated with Z;, the score test shown above is no longer the true score
test that would apply to the model. The appropriate score test would require that the
form of the correlation between ); and Z; be known. If such correlation is ignored,
the version of the score test shown above may be significantly less efficient than the
discontinuity test, as will be shown in the experiments bellow.

The Monte Carlo design that follows uses artificially generated data. The matrix
Z, whose rows are the Z! | has four columns, one of which is a constant, and 100 obser-
vations. Four experiments were implemented. In the first two (Experiments 5 and 6),
the g; were simulated independent normally distributed. In the last two (Experiments
7 and 8), the &; were simulated independent beta distributed, left skewed, but with
the same mean and variance as in the normal case. As to the correlation between Q);
and Z;, the simulations in Experiments 5 and 7 have no correlation between (); and
Z;, while in the simulations in Experiments 6 and 8, ); and Z; are correlated: the @);
are assumed to be an arbitrary nonlinear function of some of the columns of Z and
a random (normally distributed) variable. The correlations between @); and each of
the three columns of Z; are -0.04, -0.002, and -0.0002. Four tests were applied to the
resulting datasets.

The first test is the discontinuity test with

9(Zi) =1,

and it will be identified in the tables as Discl. The second test is a split-sample test

with function 775

— 7T

Q(ZZ))‘< 7, )7

which will be identified as Disc2. The third test is the score test used in the real data
simulations above, that assumes ¢; and (); to be jointly normal, and (); and Z; to be
uncorrelated. It will be identified as Score. Finally, the fourth test consists of a t-test
of whether the coefficient of the dummy variable 1(X; = 0) in a regression of Y; on
X;, Z; and 1(X; = 0) is equal to zero. This test will be identified as the Dummy test.
As with the simulation with real data (albeit less so), it was necessary to correct for
the degrees of freedom in each test, since all were oversized when using the critical
values of the respective asymptotic distributions.

The tables below show the proportion (out of 10,000 repetitions) of rejections at
the 5% significance level. Table 5 shows the results of the first simulation, where Q;
and Z; are independent, and ¢; is normally distributed. Table 6 shows the results of
the second simulation, where @); and Z; are correlated, and ¢; is normally distributed.

Table 5 shows that the four tests performed very similarly when @; and Z; are
independent. There are some gains of efficiency for the discontinuity tests at the
correlation levels p = 0.5,0.75, and 0.9. Larger gains of efficiency are obtained when
Q; and Z; are correlated. For this example, Discl test performed marginally better
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Table 4.2: Artificial experiment, ¢; has a normal distribution

Exp.5: @); and Z; uncorrelated | Exp.6: ); and Z; correlated

p Discl Disc2 Score Dummy | Discl Disc2 Score Dummy
0.00 5.0 4.9 4.9 5.0 4.9 4.9 5.1 5.1
0.10 6.0 5.8 5.7 5.8 5.6 5.6 5.6 5.6
0.25 10.4 10.4 9.6 10.4 10.4 10.9 7.8 8.7
0.50 31.8 31.8 27.2 31.3 32.0 34.8 17.9 23.0
0.75 81.2 80.9 69.5 78.3 80.9 84.1 45.7 60.1
0.90 99.7 99.7 94.8 99.3 99.7 99.7 77.6 92.7
0.99 | 100.0 100.0 99.0 100.0 | 100.0 100.0 92.6 99.8

than Disc2 test. At the levels p = 0.5,0.75, and 0.9, the dummy test exhibited a
significant loss of efficiency compared to the discontinuity tests, and the score test
rejected even less.

When ¢; is simulated as having a skewed distribution, the tests’ comparative
behavior remains the same. Table 7 shows the results of the third simulation, where
Q; and Z; are independent, and ¢; has a skewed distribution. Table 8 shows the
results of the fourth simulation, where (); and Z; are correlated, and ¢; has a skewed
distribution.

Table 4.3: Artificial experiment, ¢; has a skewed distribution

Exp.7: Q); and Z; uncorrelated | Exp.8: @); and Z; correlated

p | Discl Disc2 Score Dummy | Discl Disc2 Score Dummy
0.00 5.1 5.2 5.2 5.3 5.1 5.0 5.2 5.1
0.10 5.7 5.6 5.9 5.8 5.4 5.5 5.6 5.6
0.25 9.5 9.7 9.8 10.6 9.5 10.2 7.8 8.9
0.50 31.0 30.7 27.1 31.3 30.8 33.7 17.8 22.5
0.75 81.9 81.5 69.2 78.2 81.9 84.7 45.2 59.5
0.90 99.8 99.8 94.8 99.4 99.7 99.8 77.2 92.9
0.99 | 100.0 100.0 99.0 100.0 | 100.0 100.0 92.5 99.9

Tables 4.2 and 4.3: Numbers shown are the proportion (over 10,000 repetitions) of rejections of
the null hypothesis of no endogeneity at the 5% significance level, for actual correlation between
the unobservables in the structural and in the latent equations equal to p. The ¢; have a skewed

distribution. Specification with 3 covariates and one constant. Sample sizes of 100 obs.
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The results are robust to different draws of the matrix Z. Changes in Z’s gener-
ating process, yielded slight modifications in the relative efficiency of the Discl and
Disc2 tests, with one or another performing better depending on the model chosen.
However, the relative positions of both discontinuity tests and the other tests re-
mained the same. The same happened to different choices of the model of correlation
between () and Z.
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Part 11

A discontinuity test of endogeneity
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Chapter 5

Introduction

This part develops a test of the problem of endogeneity in a structural function.
When a random variable (r.v.) Y has an expressed relationship to the r.v.’s X, Z, @
and ¢, the structural function is defined as the function f such that

Y = f(X,Z,0,2). (5.1)

Let X be a scalar observable r.v., Z be a vector of observable r.v.’s, () be a vector
of unobservable random variables that present some form of probabilistic dependence
with X, and ¢ a vector of unobservable random variables which are independent of X.
X is said to be “exogenous” in f if f is constant in @), that is, when f(X, Z,Q,¢) =
f(X,Z,q,¢) everywhere but at a zero probability set, for any particular fixed value
that ) can assume, denoted ¢q. Conversely, X is said endogenous if such condition is
not satisfied.

The problem of endogeneity in the structural function is fundamental for the
identification of interesting properties of f through the conditional expectation of Y
given the observable variables X and Z. For example, as is commonly the case, one
may be interested in the expected derivative of f with respect to its first argument.
If it is possible to interchange aiX and [E, then

(fXE(wX, Z)=E (fx(X, 2,Q.) + [,(X. Z,Q,¢) 5?( ’X, Z> ,

where f, and f; are the derivatives with respect to the arguments X and () respec-
tively, then if X is exogenous, f,(X, Z,Q,¢) = 0, and therefore E(f,(X, Z,Q,¢) | X, Z)
is identified.

Tests of endogeneity (which are in fact tests of the null hypothesis of the exogeneity
of X) often assume that f has a specific structure. In these cases, it is impossible to
disentangle whether a rejection was caused by endogeneity or by the misspecification
of the structure of f. However, the two problems have entirely different solutions.
Misspecification is solved by searching for the correct specification, while endogeneity
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requires the use of instrumental variables when available, or the adoption of methods
that account for endogeneity, such as “differences in differences,” “correlated random
effects,” etc. when the data and the problem allow, or finally searching datasets
where a wider array of covariates is observed. A test of endogeneity which does not
impose a structure on f is immune to the problem of misspecification, and therefore
a rejection in such a test can be inferred as evidence of endogeneity.

Nonparametric tests of endogeneity are not abundant in the literature. This is in
part due to the recency of the research on nonparametric instrumental variable (IV)
estimators. Blundell and Powell (2003) and Hall and Horowitz (2005) discuss the
difficulties involved in such undertaking, due to the fact that the identifying condition
is an “ill-posed inverse problem.” Nonparametric IV estimators of the structural
function have been proposed in Darolles et al. (2003), Blundell et al. (2007), Newey
and Powell (2003), and Hall and Horowitz (2005). The available tests of endogeneity
suppose either that the potentially omitted variables are observed (see for example
Fan and Li (1996), Chen and Fan (1999) and Li and Racine (2007)), or that an
instrumental variable exists and is observed (see Blundell and Horowitz (2007) and
Horowitz (2009)). In both cases, f is identifiable and can be consistently estimated,
and the test is useful in the decision of which estimation strategy to pursue. This is
no small concern in nonparametric estimation, because the rates of convergence of the
estimators decrease considerably if irrelevant covariates are included, and even more
if an instrumental variable approach is used where it is not necessary. The potential
efficiency losses are therefore much more substantial than in the parametric cases.

The test presented in this part does not require that the omitted variables be
observable, nor that an instrumental variable exist, and to the author’s knowledge,
it is the first nonparametric test of endogeneity in the structural function where
neither of these two conditions is necessary. Since most omitted variables are so
because of being unobserved and since good instrumental variables are often not
readily available, a test of endogeneity with no such requirements is of considerable
interest. Its usefulness is in alerting about a problem of endogeneity before any
measure to solve it is researched. Alternatively, the test can be used to validate a
selection on observables approach when instrumental variables are not available. In
the cases where selection on observables is acceptable, the test can be applied further
as an omitted variable test, to aid the exclusion of further covariates, which greatly
improves efficiency in nonparametric estimation.

The fundamental maintained assumption in this approach is that f is continuous
in X. In that case, if X is exogenous, then E(Y | X, Z) has to be continuous in X.
Hence, a test of the null hypothesis

Hy: X is exogenous,
versus the alternative hypothesis

H,: X is endogenous,
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can be built by estimating the discontinuity of E(Y | X, Z) with respect to X at a
given point X = x.

The test has power against H; when the distribution of ) conditional on X and
Z is discontinuous in X at a known point X = xy. In this case, if X is endogenous,
then f varies with ), which in general implies that E(Y | X, Z) will be discontinuous
in X at X = xy5. The cases where the distribution of () conditional on X and Z
is discontinuous in X at a known point X = xg define the spectrum of applications
where this test can be used to validate a selection on observables approach.

In principle, the test could consist of the estimation of the discontinuity of E(Y | X =
x,7Z = z)in x at x = xo for a given z, but this would seem to require the nonpara-
metric estimation of the limit of the multivariate function E(Y | X = x,Z = z) when
x approaches zy. The rate of convergence of such regressions is typically very slow,
and hence the test would have little power. A much higher rate of convergence can
be achieved through working with a characteristic aggregation over a measure of 7,
i.e. by estimating, for example, the average discontinuity, or the correlation between
the discontinuities and a function of Z, etc. For a wide variety of such tests, this part
shows that the rate of convergence is the same as that of a univariate nonparametric
regression (sections 7.2 and 7.3 in chapter 7). Therefore, the aggregation allows for
controlling the influence of the observable covariates without loss of power due to
slower rates of convergence. This is a property observed in the literature of partial
means (see Newey (1994)), or marginal integration (see Linton and Nielsen (1995)).

The discontinuities are estimated in a similar fashion to what is done in the re-
gression discontinuity literature (see Imbens and Lemieux (2008)), by estimating the
one sided limits of the conditional expectation at a point. This entails nonparametric
estimation at the boundary, and to minimize problems due to boundary bias, this part
will make extensive use of local polynomial estimators. The estimators of the limits
of G are very similar to those already seen in the regression discontinuity literature
(see Porter (2003)), but this part proposes a new estimator of the variance of the
boundary local polynomial estimator, which allows the density of X to be different
at the right and left sides of the threshold zy, and also uses boundary estimators for
all the components of the variance. This approach to the estimation of the variance
is more adequate to the kinds of situations where this test can be applied, but can
also be useful in the context of the regression discontinuity design, and particularly
useful in the newly developed regression kink design (Card et al. (2009)).

This part develops the discontinuity test of endogeneity under three testable as-
sumptions about the E(Y | X, Z): when it is linear in X and Z, when it is nonpara-
metric in X and additively linear in Z, and finally when no parametric assumptions
are made about E(Y | X, Z), but there exists a finite subset of values of Z which
has positive probability. The more restrictive cases yield naturally more precise test
statistics, which converge at the rates y/n in the linear case and v/nh in both the
partially linear and nonparametric cases. The test is not hard to implement. The
linear case is trivial, and for the partially linear and fully nonparametric cases, all
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that is required for the estimation of the test statistic and its variance is the com-
putation of some local polynomial regressions at X = zy and some sample averages.
The discretion requirements are only the choice of bandwidth, kernel type and the
degree of the polynomial.

Chapter 8 discusses a test of endogeneity when the support of the distribution
of X is not continuous. In this case, the comparison between E(Y | X = z¢, Z) and
lim, .., E(Y | X = z,7) is irrelevant for uncovering the endogeneity of X. Instead,
this section assumes that f has bounded variation, and builds an undersized test
which detects endogeneity when @) causes E(Y | X = z,Z) to vary with = beyond
what f is prescribed to vary with z.

Finally (in chapter 11), the partially linear version of the test is applied to the
problem of the estimation of the effects of maternal smoking on birth weight, which
is an example where the validity of the assumptions of the test can be argued. This
is a problem where experiments cannot be performed for ethical reasons, and where a
series of selection on observables approaches were attempted. Almond et al. (2005) is
to the author’s knowledge the most exhaustive of these studies, and in section 11 the
discontinuity test is applied to the most complete specification in that paper for two
outcome variables: birth weight, and probability of birth weight below 2500g. The
test finds strong evidence of endogeneity in the birth weight equation, and very weak
evidence in the probability of birth weight below 2500g equation.

The rest of this chapter has two sections. Section 5.1 presents the idea of the
discontinuity test in a very simple linear example. Section 5.2 offers a detailed preview
of all the parts of the paper.

5.1 A simple example

This section develops a simple model, with excessively restrictive conditions, with
the purpose of clarifying the concepts and results that will be seen in the later chapters
of this part. Consider the following model:

Y = f3xX + 278, +6Q + ¢ (5.2)

where ¢ is independent of X and Z and ). If () and X are correlated conditional on
Z, then X is exogenous in (5.2) if § = 0, and endogenous if § # 0.
The structural function (5.2) is obviously continuous in X. Observe that

E(Y|X,Z)=03xX + 273, +0E(Q| X, Z).
Hence, if X is exogenous, 6 = 0, and E(Y | X, Z) is continuous in X. Define
AZ)=E(Y | X =20, 7) — lim E(Y | X =, 7)

T—X0

=5 (B(Q|X =0, 2) ~ Jim E(Q|X =,2))

Tr—X0
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for an xg in the support of the distribution of the X, supposing that these limits
are well defined. Thus if X is exogenous, A(Z) = 0, for all Z. Though this result
is almost obvious due to the assumed linearity, the fundamental feature of (5.2) is

continuity in X. Define
0 = E(A(Z)| X = ), (5.

then X exogenous implies § = 0, and the same would be true for any function G of
the A(Z) for which G(0) = 0.

The following assumption, though extremely restrictive, explicits from where the
power of the test derives.

Assumption 5.1.
1. E(Q|X,Z2)=axX + Z%az + ag 9(Z2)1(X = xo)

2. aQ 7& 0
3. B(9(Z)1(X = 2)) # 0

Assumption 5.1 implies that 0§ = 0 agE(g(Z) | X = zy), and therefore if X is
endogenous, § # 0, and hence 6 # 0. The fundamental fact implied by assumption
5.1 is that the distribution of () conditional on X and Z is discontinuous in X at
X = x, the linearity assumed in item (1) only helps to make the points clearer. The
conclusion is that in this case 6 is an appropriate parameter on which to base a test
statistic, because not only it behaves as expected under the null hypothesis H, (that
is, # = 0 when X is exogenous), but also it will yield non-trivial power under the
alternative hypothesis H; (see theorem 7.3).

In order to build the test, observe that for X # x,

EY|X,Z) = (ax + Bx)X + Z"(az + B2). (5.4)

Hence, from equation (5.3),

6 =E(Y|X =) ~E(lim E(V|X =2,2)| X =),

T—T0

= E(Y ‘ X = l‘o) — [(OéX + ﬁx)xo + ]E(Z ‘ X = l’O)T(OéZ + ﬁz)} .

Suppose the data is composed of n random draws (Y;, X;, Z;) of the variates
(Y, X, Z). Equation (5.4) guarantees that vx := ax + Ox and vz := az+ (7 are iden-
tified, and can be estimated reasonably by an OLS regression of the Y;1(X; # x¢) on
X;1(X; # x) and Z;1(X; # x0). E(Y | X = x¢) and E(Z | X = z¢) can be estimated
using their empirical counterparts. The discontinuity test statistic is now

STY: = Axwo — ZF A7) 1(Xi = o).

1
1
n;3

0= (i é 1(X; = x0)>
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Assumption 5.2.
1. (Y, X, Zy),i=1,...,n are i.i.d.
0<P(X;=120) <1

Var(e; | Xi, Z;) = 0% < 0

Let n; := Q —E(Q; | X, Z;), then Var(n; | X;, Z;) = 072] <oo,i=1,...,n
It is direct to decompose 0 — 0 in matriz form as
0—0=_0")""I+WW'DW)'W'D)(e + én),

where + = (1(X] = x¢),..., (X, = x0))T, I is the identity n x n matriz, W
is a matriz with rows equal to (X;, Z]), D = Diag{1(X; # x¢),...,1(X,, #
x9)} and € and m are the column vectors with rows e; and n; respectively, and
supposing that WT DW is invertible. Assume further that

5. E (@) 15 tnwvertible
Theorem 5.1. Given the model and assumptions 5.1 and 5.2, then
Vil —6) LN (0,P(X =z0) (o2 + 5o (1+ v)),
where

E(X?1(X # x0)) B(XZT1(X # x9))
E(ZX1(X # 20)) E(ZZT1(X # x)))

_1{E(Z|§(O= o)

v= xOE(Z|X:xO)H

This result is very similar to theorem 7.1. Under Hy,
V(0 —0) L N (0,02P(X = 20) 1 (1 +0)),

and the method of moments estimator of o2 is given by

n

1 1
62 = (ﬁ > 1(X; # 900)) - > [Yz’ — AxTo — ZiT’?Z]z 1(X; # o).
i=1 i

=1

The other elements can be estimated by substituting the population by the sample
counterpart.
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5.2 Overview of Part 11

This section presents a detailed overview of what is covered in each chapter of
this part. Since the objective is to develop a test of endogeneity, the work begins by
defining a parameter that will be the basis of the test statistics, then it builds the
actual test statistics using that parameter as reference. For different test statistics it
provides different asymptotic results and power considerations. Then it goes on to
discuss the applicability of the test, using many examples and also showing how to
argue that the test is applicable in a given situation. Finally, it applies the test to
the case of the effects of maternal smoking.

Chapter 6 covers the development of the parameter that is the basis of the discon-
tinuity test. Let the discontinuities of E(Y | X = z,Z) in x at xy be denoted A(Z),
0= [G(A(Z),Z)dv(Z) is the aggregation of known functions G of such discontinu-
ities over a known measure v over the range of the Z. In this chapter it is shown
(theorem 6.1) that X exogenous implies that # = 0 under a set of assumptions dis-
cussed there (assumption 6.1), of which the most important is that E(Y | X =z, Z, Q)
is continuous in X for all Z and (). The power of the test derives from 6 # 0 when X is
endogenous. The same chapter proposes a condition (assumption 6.2) that guarantees
non-trivial power in general.

Chapter 6 also discusses that the function G(A(Z), Z) = A(Z)g(Z) and the mea-
sure ¥(Z) = F(Z | X = xg) are desirable, because the resulting 6 is simpler to esti-
mate. In that case, 0 = E(Y¢g(Z)| X = o) — E(lim, ., , E(Y | X =2, 2)9(Z) | X =
xo). The first term can be estimated via a simple sample average, and the second can
be estimated by a sample average of the plugin estimators of the lim,_,,, E(Y | X =
x, Z) interacted with g(Z).

Chapter 7 develops the discontinuity test statistic from the parameter discussed in
chapter 6. It begins by proposing the empirical equivalent of 6, 6 = % " 9(Zy) [Y} —
by (x, Zi)]l(Xi = x¢), where by,(; z,) is an estimator of lim, .., E(Y | X = z,Z). The
form of b, as well as the empirical properties of 0 depend on the assumptions over
E(Y | X,Z). This part explores three possibilities. The first (section 7.1) assumes
that E(Y | X = x,7) is linear when = # . This is a testable assumption, and if
satisfied, b, can be chosen as the result of a simple OLS regression, as was shown in
the simple example in section 5.1.

The second possibility (section 7.2) assumes that E(Y | X =z, Z) = 7(x) + ZTy
whenever  # xy. This is testable assumption, and b, in this case depends on the
estimation of both v and lim, .., 7(x). This is done restricting the sample for the
observations such that X # xy and estimating v in the way it is traditionally done in
the partially linear models literature (see Robinson (1988)). The nonparametric term
lim,_,, 7(x) is then estimated by a local polynomial regression of the Y; — Z'4 on X;
at xg. The resulting 6 is shown converge at the rate v/nh to a normally distributed
random variable, and the asymptotic variance is the same as that of a local polynomial
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regression of Y; — ZT'y on X; at xy, which can be found for example in Porter (2003).

The third possibility (section 7.3) allows the E(Y | X, Z) to be arbitrary, though
some differentiability conditions are necessary given the estimators used. The funda-
mental condition in this case is that the distribution of the Z have finite support. 0
is then the average of the ém, which are the discontinuity test statistic if the sample
is restricted to the observations such that Z; = z™. The 6, are weighted by the
empirical probability that Z; = 2™. 6 converges at the rate v/nh to a normally dis-
tributed random variable with variance equivalent to the average of local polynomial
regressions of (Y; — ZI'y)1(Z; = 2™) on X; at xq, weighted by the probability that
Z; = 2™,

Both the identification and estimation strategies used in sections 6 and 7 depend
on assumption 6.1 (1), which requires that the distribution of X have a continuous
support, or that the support have at least one interval subset containing xy. When
this assumption fails, it is still possible to test endogeneity, though the approach has
to change. Chapter 8 focuses on this problem, and supposes that when X varies, the
variation of f is bounded, and the bounds are known. From this condition it is possible
to define a parameter 6 which is valued between the same bounds of variation of f
whenever X is exogenous. The test built form such parameter is naturally undersized,
but it has non-trivial power against H; when the variation caused by the endogeneity
of X pushes 0 outside of the established bounds.

Finally, chapter 9 discusses teh applicability of the discontinuity test, more specif-
ically when the condition that dF(Q| X, Z) is discontinuous in X at X = xy. The
main point of the chapter is that example that satisfy this condition are usually found
when x is a mass point in the data distribution.
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Chapter 6

Identification

This chapter is concerned with the parameter § on which the discontinuity test
statistic is based. The chapter begins by presenting the formal definition of the en-
dogeneity of X. Then in assumption 6.1, it presents conditions that guarantee that
if X is exogenous, then E(Y | X = z,Z) is continuous. The fundamental require-
ment among them is that f is continuous in X (assumption 6.1 (2)). However, the
discontinuity test will not be based on E(Y | X = z,Z) because of power concerns
(see remark 6.1 below), as discussed in chapter 5, so the parameter 6 is introduced
as more desirable. The main identification theorem can then be considered (theorem
1). It consists of that if X is exogenous, then § = 0. The theorem is followed by
assumption 6.2, which requires, among other technical details, that the distribution
of @) conditional on X = x and Z be discontinuous in x at x = xy3. A consequence
of this assumption is that in general if X is endogenous, then E(Y | X = z,7) is
discontinuous in x at x = xy. Result 1 then states that this in general translates into
0 # 0 when X is endogenous. The parameter 6 has therefore the property that if X
is exogenous, then # = 0, and if X is endogenous, then in general 6 # 0.

Definition 1. Let Y, X, Z, Q) be defined as in chapter 5. If QQ and X are dependent
conditional on Z, then X 1is exogenous in f if

PE(Y|X,2,Q) = E(Y | X,2)} = 1.
Otherwise, X is endogenous.

Assumption 6.1. Let X' be the support of the distribution of X, and Z, be the support
of the distribution of the Z conditional on X = x. Let F' denote the distribution
function corresponding to the probability function P. Then,

1. X is real-valued, P(X = xo) > 0, and there exists a neighborhood N of xq such
that N C X.

2. The sets Z, are identical, Vo € N.
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3. E(Y | X =x,7Z,Q) exists for all the values of x, Z and Q, and is continuous in
x at x = xg for all the values of Z and Q).

4. If for all x € X, 2y < z, define limy,, dF(Q| X = x,Z) = dF(q|xo, 2), and if
for all z € X, xg > x, define lim,|,, dF(Q| X = x,7Z) = dF(q|xo, z). Assume
that lim, ., dF(Q| X = z,Z) and lim,,, dF'(Q| X = x,Z) exist for all the
values of Z.

Assumption 6.1 (1) implies that 0 < P(X; = x9) < 1. It also implies that
X contains at least one interval subset N, and therefore X is locally a continuous
random variable. For 0 < a < 1, define the quantity

x|xo zTxo

AZ)=EY|X =x0,2) — (alim]E(Y|X:x,Z)+(1—a)limE(Y\sz,Z)),

where if zg is a lower boundary point in N, then o« = 1, and if z( is at the upper
boundary, a = 0. A(Z) is the weighted right and left discontinuity of E(Y | X = z, Z)
at x = xg. Let 0 be defined as

6= / G(A(Z), Z)dv(Z) (6.1)

for a known function G and a known measure v on the range of Z, and supposing
that the integral exists.
This part presents a test of the null hypothesis

Hy: X is exogenous,
against the alternative hypothesis,
H,: X is endogenous.

Implementation of the test requires the estimation of the parameter 6. It will be soon
stated that X exogenous implies § = 0. This is fundamental to establishing that tests
based on # are well defined, in the sense that they have the correct asymptotic size
under H,.

Theorem 6.1. If v is identifiable, G(0,z) = 0, Vz and assumptions 6.1 and B.1 (see
remark 6.2) are satisfied, then 0 is identifiable and is equal to zero if X is exogenous.

The proof is provided in appendix B.1.1. The argument consists of: if X ex-
ogenous, then E(Y | X = z,7,Q) = E(Y | X = z,Z) almost surely for all x and Z.
This implies that E(Y | X = z, Z) is also continuous due to assumption B.1, and so
A(Z) = 0. 8 = 0 follows because G(0, z) = 0. It will be seen in chapter 7 that 6 is in
fact estimable (pending more conditions), and that its estimator (defined in chapter
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7) is the discontinuity test statistic. An example of an identified v is the distribu-
tion of Z. Tt yields = E(G(A(Z), z)). If, for example, G(A(Z),Z) = A(Z)?, then
0 = E(A(Z)?), which is the average square of the discontinuities A(Z).

Of particular interest is the case of G(A(Z), Z) = A(Z)g(Z), for some real-valued
function ¢ in the domain of Z, and v(Z) = F(Z | X = xy). Here, from equation (6.1),

0 = E(A(Z2)g(Z) |z = o)

=Eyg(Z)|x=x)—|aF <1imE(Y|X =x,72)9(Z) ’x:xo)

zlxo

+(1-a)E <liTm E(Y | X =2, 2) ¢(2) ’x - m0> } . (6.2)
zTxo

via the law of iterated expectations, supposing that all the moments in (6.2) exist.

This parameter will be useful because its estimation does not require the estimation

of E(y|x = xg, 2), and because E(y g(Z) | x = x) can be estimated at the rate \/n if

P(x = z0) > 0, as will be shown in chapter 7.

Theorem 6.1 showed that under Hy, 8 = 0. Since the discontinuity test statistic
is based on an estimator of 6, the discontinuity test has non-trivial power against
H, if under Hy, 8 # 0. The following assumption determines cases in which the
discontinuity test has non-trivial power against H;.

Assumption 6.2. Suppose assumption 6.1. Define, for a given o € [0, 1],

(@, 2) = dF(Q| X = w0, Z)
— (ozhmdF(Q\X:x,Z)—l—(l—oz)limdF(Q\X::L’,Z)>.

x|xo zTxo
Then, P(C(Q,Z) #0|x) > 0, for all the values of X in a neighborhood of xy.

Assumption 6.2 implies that dF(Q | X = z, Z) is discontinuous at xy. The discon-
tinuity may be different from the right or left hand side, or even exist for only one of
the sides. The assumption also stipulates that the discontinuity is one sided if g is
at the boundary of X', that is, if either xo < x, Vo € X or xg > x, Vo € X. If 2y is an
interior point, knowledge of the particular problem can be used to choose «. If the
right and left limits of dF(Q| X = z,Z) are the same, the choice of « is irrelevant,
and then ((Q, 7)) :=dF(Q| X =0, Z) — lim,_,, dF(Q| X =z, 2).

Assumption 6.2 defines xy. In other words, the discontinuity test will have non-
trivial power in the situations where there exists an xy in X such that assumption
6.2 is reasonable. This is established in the following result.

Result 1. If assumptions 6.1, 6.2 and B.1 hold, then in general, if X is endogenous,
0 # 0.
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Result 1 is not a theorem, as Assumption 6.2 alone cannot guarantee that under
Hy, 0 # 0. To understand this result, observe that by assumption B.1,

0:/G(UE(Y|X:xO,Z,Q)dF(Q|X:xo,Z)—

—a/]E(Y|X:xO,Z,Q)lilmdF(Q|X:x,Z)
z|zo

zTxo

—(1-a) /E(Y |X =20, Z,Q) lim dF(Q | X =, Z)},Z)du(z)
_/G(/E(Y | X = 20, Z,Q)C(Q, 2), Z)du(Z) (6.3)

Assumption 6.2 guarantees that ((Q, Z) # 0 with positive probability. However, it
cannot be guaranteed that 6 # 0 unless further requirements are made concerning
each of G, v, E(Y | X, Z) and the shape of ((Q, Z), and this is why result 1 is said to
hold “in general.” Section 6.1 presents an example where conditions are given such

that result 1 holds always. The results concerning the power of the test (theorems
7.3, 7.6 and 7.9) hold if result 1 holds.

Remark 6.1. The discontinuity test could simply consist of forming an estimate of
A(Z) for some value of Z, and then testing whether A(Z) is zero. However, such a
test may have little power because A(Z) can in general be estimated only at very low
convergence rates. In the interest of the accuracy of the estimation, and to avoid the
problems that an incorrect choice of Z could occasion, it is preferable to aggregate the
discontinuities. This leads to the definition of the parameter 6.

Remark 6.2. Condition B.1 in appendix B.1.1 requires the interchangeability of the
integral and the limits in the following specification. For each Z, consider a sequence
FQ|X = z,,7) and p(Q) = dlim, . F(Q|X = x,,Z), when they exist. By
assumption 6.1 (1), ¥, — ¥ pointwise in Q. By the definition of the Riemann-
Stieltjes integral,

Jim [ ndp, = lim im S £,(Q9)ua(dQ).
where Q° is any point in the intervals of length dQ. Then, assumption B.1 can be
expressed as lim, o [, du, = [ du. Conditions for this can be established with
measure theory convergence theorems concerning changing the order of the limits and
by requiring that the support of dF(Q) be compact.

Remark 6.3. The parameter used in the case with no covariates Z (described in
chapter 5) cannot be used in the case where the Z are present. In that case, E(Y | X =
x9) is compared with the limit lim, ., E(Y | X = z). Observe that the parameter
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0 controls the distribution of Z, because it uses the fized measure v to weight the
different Z. In the simple comparison of lim, ., E(Y | X = x) and E(Y | X = x),
the distribution of Z, which s often discontinuous at x = xqy can be responsible for
a difference even when X is exogenous. To see this, notice that if X is exogenous,
EY|X =2,72,Q) = EY|X,Z), and provided the limit can exchange places with
the integral sign,

lim E(Y | X =2)=lim | EY |X =2, 2)dF(Z|X =x)

T—X0 T—T0

:/E(Y|X — 20, 7) lim dF(Z| X = x)
T—T0

and
E(Y]X:xo):/E(Y|X:xo,Z)dF(Z|X:xO)

Since lim, ., dF(Z|X = x) and dF(Z|X = xo) can be and often are different,
E(Y | X = z) can be discontinuous at xo even when X is exogenous, and therefore
this comparison is useless for the detection of endogeneity.

Remark 6.4. Theorem 6.1 allows for other random wvariables to enter the model.
Suppose for example that
Y =f(X,Z,Q.¢)

where € is statistically independent of X, Z and Q). Provided f is continuous in X
at g, it is direct to show that E(Y | X = x, Z, Q) will also be continuous at xo. This
will be done in appendiz B.1.2.

6.1 A censoring example

Basic conditions for assumptions 6.1 and 6.2 can be set down for a model in which
X is censored. Such situations could occur, for example, when X is the result of a
cornered optimization problem. This is the case of the effects of maternal smoking
example referred to in chapter 5 and analysed in chapter 11. There, smoking is a
choice variable that cannot take on negative values. The following model and the
suggested assumptions are not the weakest for identification of . They are meant to
illustrate the point in an intuitive way.

Suppose an unobservable variable X* is observed in its censored form X =
max{X* 0}. Suppose ¢ is independent of the variables X, Z and @, and that the
variables Y, X, X*, Z, () and ¢ are related via the structural equations

Y=/(X,Z,Q)+e and X" = fo(Z,Q).
Then

fl(szafgl(X;Z)% 1fX>O?

E(f,(0.7, f; (X" 2) | X" <0,2), ix=0 O

E(Y|X,Z):{
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In this model, instead of assumptions 6.1 and 6.2, consider the following assump-
tion:

Assumption 6.3.

1. f1 is continuous in X at X = 0, and if fi varies on Q, it is continuous and
increasing in Q.

2. fo is strictly decreasing in X*, and fo(+; Z)™ is continuous in X*, VZ.
3. 0<P(X*<0)<1.
Given the model and assumption 6.3, one has

A(Z) =E(L(0,Z, [, (X5 2)) | X" <0,Z) = [1(0,Z, f;(0,2)) > 0

if and only if f; varies in (). Hence, if G(A(Z), Z) = A(Z)g(Z), for a strictly positive
function g, and suppose v is not zero everywhere, then 0 = [ A(Z)g(Z) dv(Z) > 0 if
and only if X is endogenous.

In the context of the smoking example, suppose that Y is birthweight, X is smok-
ing, X* is “intended” smoking, and the Z are a set of covariates. If Y, X and Z satisfy
the model and equation 6.4, then assumption 6.3 implies that even if the covariates
are held constant, the average birthweight of babies born to nonsmoker mothers will
be discontinuously higher than the birthweight of babies born to mothers that smoked
positive if and only if smoking is endogenous.
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Chapter 7

A discontinuity test of endogeneity

This chapter develops the discontinuity test statistic 6. It depends on the estima-
tion of lim, ., , E(Y | X = 2,Z). For that, diverse assumptions can be made about
the nature of E(Y | X, Z). After a general discussion of the aspects of § that are
common to all cases, this chapter contains three sections. Section 7.1 assumes that
when X # zo, E(Y|X,Z) is linear in X and Z, and develops an estimator that
takes this assumption into account. Section 7.2 assumes that E(Y | X, Z) is partially
linear (linear in Z), while section 7.3 allows E(Y | X = z, Z) to have a nonparametric
structure. The three sections provide results about the asymptotic behavior of 0 in
each case, as well as variance estimators and power considerations. The three sections
stand alone.

The discontinuity test consists of the estimation of 6 and testing whether it is
equal to zero. A natural approach would be to adopt, for some 0 < a < 1,

f= / G(A(Z), 2)do(2),

where

~

AZ)=E(Y | X =20, Z) — (aB(Y |20, Z)" + (1 — @)E(Y | 20, 2)"),
and E(Y |z, Z)* is an estimator of lim, ,, E(Y | X = z,Z) and E(Y |z, Z) is an
estimator of lim,,, E(Y | X = x, Z) which will be defined differently in each section
7.1, 7.2 and 7.3.

As explained in chapter 6, the tests where G(A(Z), Z) = A(Z) g(Z), for some g,
and v(Z) = F(Z | X = xy) are of particular interest. They eliminate one step in the

estimation of #. Hence, the rest of this section will develop the discontinuity test for
0 =E(A(Z)g(Z)| X = z). Let the data satisfy

Assumption 7.1. Suppose
1. The observations (Yi, X;, Z;), i = 1,...,n are i.i.d., Z; = (Z},..., ZHT.
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2. 0 <P(X; =x) < 1.
3. E(|A(Z;) g(Z:))PT91(X; = 20)) < 00 for some & > 0.

Define ¢; = Y; — E(Y; | X;, Z;), and define V4 = Var(A(Z;) g(Z;) | Xi = o). Let
Puy = 2371 1(X; = x) denote the method of moments estimator of P(X; = o).
When p,, > 0, the suggested estimator of @ is then, from equation (6.2),

= - zn: [Y; — aE(Y; | 20, Z0)* — (1 — @)B(Y; | 20, Zi)'] 9(Z;) L(Xi = @) (7.1)

E(Y | 2o, Z)" —E(Y |20, Z)"

E(Y; | o, Z;)' = }Ellg}) E(Y; | X; =z, 7;), D(z)*

E(Y;-|x0,ZZ»)T:iiTrEJE(YHXi:x,Zi), [(2)” =E(Y |20, 2)" —E(Y |2, 2)".

Next write R
0—0=A,—B,
where
112
1(X; = 20) — E(A(Z:)9(Zs) | Xi = o) (7.2)
pf’fO n =1
pfﬁ Z (1= o)(Z) " 19(Z:)1(X; = o). (7.3)

Under the null hypothesis that X; is exogenous, A(Z;) = 0, and therefore A,, =
0. Results are developed for the case A, # 0 for power considerations. Since A,
does not depend on the estimators of E(Y; | xq, Z;)! or E(Y;| 2o, Z;)!, neither does its
asymptotic distribution. Assumption 7.1 item (1) and the LLN (p. 124 in Chow and
Teicher (1997)) imply that p,, = P(X; = x0), and items (1) and (3) and the CLT
(theorem 3.3.7 in Amemiya (1985)) imply that /n(2 S0 A(Z)g(Z)1(X; = x0) —
E(A(Z)g(Z)1(X; = mo)) is asymptotically normally distributed. Finally, item (2),
the continuous mapping theorem (theorem 3.2.5 in Amemiya (1985)) and Slutsky’s
theorem (theorem 3.2.7 in Amemiya (1985)) imply that

VA, 5 N0, Vy) (7.4)
as n — 0o. The asymptotic behavior of B,,, and hence of é depends on the assump-

tions one is willing to make on the nature of E(Y; | x¢, Z;)" and E(Y; | 29, Z;)!, and the
related choice of estimators. This is done in the following sections.
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7.1 The linear case
Suppose that for X > xy, the conditional expectation satisfies
E(Y|X,Z)=3"X + Z"4T, (7.5)
and for X < xg, the conditional expectation satisfies
EY|X,2)=08X+2Z"y".

If z¢ is the left boundary of N, then 5~ = 0 and v~ = 0. If zg is the right boundary
of N, then f* =0 and v+ = 0.

Example 1. (Censoring) Equation (7.5) can be derived inside the censoring model
presented in chapter 6.1. Suppose

f(X7 27 Q) = OZXX + ZT&Z + aQQ
g(27 Q) = ZTﬂ-Z + Q
then, substituting into the conditional expectation equation (6.4) for x > 0,
EY |X,Z) = (a, + ) X + Z" (ay — agry),

which translates into equation (7.5) if 5+ := ax + ag and v == ay — agny.

In the linear (in X and Z) case, E(Y; |:U0, )= prag+ZEyT, and E(Y; | 2o, Z;)!
B~xo + ZIy~. The coefficients /3+ and y* can be estimated by simply regressing
on X; and Z; using only the observations for which X; > xo. Then E(Y; |z, Z )l

Btag 4+ ZTAT. The result for B(Y; |z, Z;)' is analogous.
Next, let

I "<|I

Wi = (Xw quT)T7 5+ = (ﬂ+77+T)T7 5_ = (/6_77_T)T7

then if xy is an interior point of A, the proposed method of moments estimators of
~T and v~ are

n -1 n
=1 =1

n -1 n

=1 i=1

If xo is the left boundary of N, then 6~ = 0. If 2y is the right boundary of A/, then
ot =0.
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Let the estimators of E(g(Z;) | X; = zo) and E(g(Z;)Z; | X; = x¢) be defined as

. 112
E(g(Zi) | Xi = x0) = — = > 1(X; = w0)g(Zs),
zo TV j=1
. 11&
E(g(Zi)Zi | Xi = w0) = ]5_5 Z (X, = 20)9(Zi) Zs,
zo TV j=1

then from equation (7.3),

B — E(Q(Zz) | X = 1) To : g
" E(g(Z:)Zi | Xi = x0)

Assumption 7.2. Suppose
1. E(|g(Z)| | Xi = x0) < 00 and E(||g(Z:) Zs|| | Xi = x0) < 0.
2. Var(e; | Xi, Z;) = 0% < 0o. (See remark 7.1 below about relaxing this condition.)

3. E(W,WIL(X; > x0)) < oo is positive definite, and E(W,WI'L(X; < z0)) < oo
18 positive definite.

Theorem 7.1. If assumptions 6.1, 7.1 and 7.2 hold, then

vl —60) L N0, Va + Vi) (7.6)
where
o [ E(9(Z:) | Xi = o) wo ’ 2 11T S o))t
Ve=o0 [ E(g(Z)7: | X; = o) } [PE(W,W/1(X; > o)) '+

17 [ E(9(Zi) | Xi = mo) 2o
—a)? T . 1
+ (1 — ) E(W; W, 1(X; < x)) ] { E(g(Z:)Z; | Xi = x0)
The proof is similar to the classical proofs of the asymptotic properties of the

OLS estimator. The absence of a term to account for the correlation of A, and
B, follows because (a(5+ -0+ (1—a)(o — 5‘)) is independent of A, and of

A

E(g(Z:)Z; | X; = x0), since the two latter only use observations for which X; = x,
while the former has zero mean and only uses observations for which X; # zy. The
absence of a cross term in Vg happens because 6+ and &* are built using different
parts of the sample, and are therefore independent. See the proof in detail in the
appendix B.2.1.

www.manharaa.com




31

Theorem 7.2. Under Hy: X; is exogenous, 6 = 0 and y/n 6 > N(0, V). If assump-
tions 6.1, 7.1 and 7.2 hold, Vg can be consistently estimated by

" T
o oo | E(9(Zi) | Xi = 20) mg o1 T o
V=0 EW,WI1(X, >
=0 (Z) 2 X, = g | ROV > o)

+ (1 - aPR(WWIL(X; < ))"Y] %
where

EW,WIL(X; > o)) = = Y. W;WI (X, > x),

=1

:\H S\H

E(W,WIL(X; < x0)) ZWWT (Xi < 20),

L[ 1 1
6’ =—|a= (Y, = WA 1U(X; > zo)+(1—a)= > _(V; = WA )*1(X; < )| -
1_pr nz 1 nZ:l

The convergence in probability of 6% to o2 is established by noticing that &2

is simply a weighted average of two standard estimators of the variance of ¢; us-
ing weighted least squares. The convergence of Vg follows from the LLN (p. 124
in Chow and Teicher (1997)) applied to E(g(Z)|X; = z0), E(g(Z:)Zi | X; = 0),
E(W, W 1(X; > x)) and E(W;W71(X; < x)) (given assumptions 7.1 (1) and 7.2
(1) and (3)) and Slutsky’s theorem (theorem 3.2.7 in Amemiya (1985)). The following
theorem gives the discontinuity test properties in the linear case.

Theorem 7.3. Let 0 < A < 1. Let ® be the standard normal cumulative distribution
function, and let cy = ®~1(N\). If the assumptions of theorems 6.1, 7.1 and 7.2 hold,
then under

Hy: X is exogenous,

~

0
— <] —= A as n— oo.
VvV Vs >

moreover, if result 1 is true, then under

]P<\/ﬁ

H,: X is endogenous,

~

0
V Vs
and under the local alternatives %,

0 Vg — 0
IP’<\/H\/A»BSC,\>—>CI><%> as n — oo.

p@s

>—>1 as n — oo,
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See proof in appendix B.2.2.

Remark 7.1. Homoskedasticity can be relazed. Let W be the matriz whose rows are
the W', let W+ be the matriz whose rows are the 1(X; > xo)W[', and let W~ be the
matriz whose rows are the 1(X; < zo)W. Suppose Var(e| W) =13, then

E(g(Z)| Xi =x0)z0 |} 2 2 { E(9(Z:) | Xi = o) o
Vp = Vi + (1 — a)?Vi ,
5= | B(g(2)Z) X = o) | (VA= gz x 2
where

WHTuw+

Vi = BV 10X > ) B (plim=——— ) BV L(X; > ao))
W-TyWw-

Vo = E(WiW/1(X; < 20))"'E (plimn> E(W,W1(X; < x0)) 7,

and plim denotes the limit in probability, supposing the limits exist. Vi can be esti-

n—oo

mated using the Ficker-White covariance matrixz (see White (1980))of an OLS regres-
sion of the Y; onto X; and Z; using only observations such that X; > xqy, and Vo can
be estimated analogously, using only observations such that X; < xq.

7.2 The partially linear case

Suppose that for X > x, the conditional expectation satisfies
E(Y;| Xi, Zi) = 77(X3) + ZI AT, (7.7)
and for X < xg, the conditional expectation satisfies
E(Y;| X, Zi) = 77 (Xo) + Z{v,

where 7 (x0)" = limg ., 77 (X) and 77 (z0)" := limgq,, 77 (X) exist. If zq is the left
boundary of X, then 7= (X;) = 0 for all X; and v~ = 0. If zg is the right boundary
of X, then 77(X;) =0 for all X; and 4+ = 0.

Example 2. (Censoring) Equation (7.7) can be derived inside the censoring model
presented in section 6.1. Suppose

[(X,Z,Q) =1(X) + 2'az + agQ,
9(Z,Q) = e(Z'n7 + Q),

where 1y is invertible. Then, substituting into equation (6.4) for X > 0,
E(Y|X,Z) = ($1(X) + agey (X)) X + Z7(az — agnz).

which translates into equation (7.7) if 77(X) = ¥1(X) + agy (X)), and v+ =
Qy —OaQTy.
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In the partially linear case, E(Y; | xo, Z;)' = 71 (x0)' + Z[y*, and E(Y; |z, Z;)! =
7 (w0)! + ZI'v~. Hence, E(Y;|xo, Z;)" = 7H(x)t + ZI4T, and E(Y; | zo, Z))! =
77 (zo)" + ZI'4~. Define

11
E(Q<Zz‘) ’Xz = fo) =% n ZQ(Zz')l(Xz = xo),
o i=1
112
E(9(Z)Zi| Xi = wo) = —— SNUX, = 20)9(Zi) Zi,
o =1

then

B, =E(g(Z) | Xi = x0) [CY(%JF(%)l — 7 (o)) + (1 — ) (7 (o) — 7_($0)T)}
+E(g(Z)Zi| Xi = 20)" (3T =7 + X —a)(3 —77)]. (7.8)

The following discussion refers to the estimation of 7F(zo)! and v*. 77 (z)!
and v~ are estimated analogously. The estimation of the parametric component in
the partially linear regression has been widely discussed in the literature. In the later
papers (after Robinson (1988)), the generally adopted technique is that of subtracting
the conditional expectation of Y; given X; so as to eliminate the nonparametric part.
The resulting equation is

Y, —E(Y; | X;) = (Z; — E(Z;| Xi)) 'yt + 6, for X;> xo. (7.9)

The coefficient of the constant term among the covariates is not identified and is
eliminated in the subtraction, so Z; in this equation does not include a constant
term.

Robinson (1988) first suggested this approach. He estimated the conditional ex-
pectations using kernel regression, and peformed an OLS regression of Y; — I@(Y; | X5)
on Z;—E(Z;| X;), to obtain 4. Robinson showed that the estimated 4% converges to
~t at the rate \/n, even though the regression includes nonparametric plugins. The
following literature established the same +/n rate of convergence and the asymptotic
distribution of v+ for an array of different nonparametric plugins. See for example
Linton (1995) when the nonparametric component is estimated using local polyno-
mial regression, and Li (2000) when the nonparametric component is estimated using
series or spline orthogonal bases.

The basic technique for the estimation of the nonparametric component is rather
intuitive. It consists of a nonparametric regression of Y; — ZI'4™ on X;, and the varia-
tions depend on the nature of 4™ and the regression technique chosen. Since the rates
of convergence of this component are slower than /n, the asymptotic behavior of the
estimated nonparametric component is a simple extension of the results for regular
nonparametric regression, because the estimated parametric component is estimated
at the faster rate v/n. The case of interest for this section is more delicate, because
the value of interest is 77 (z)!, which is the limit of the nonparametric component at
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a boundary point. There are two difficulties, the first is that nonparametric estima-
tion at boundary points requires especial attention in the choice of the estimator and
in the asymptotic treatment. For this reason 7 (x()! is estimated using local poly-
nomial regression, since this technique has been shown to possess excellent boundary
properties (for example, p. 69 in Fan and Gijbels (1996)).

Though other techniques could also be used, such as for example a simple kernel
regression using boundary kernels, the local polynomial regression is also desirable in
that it requires no especial tailoring for the boundaries. Hence, the researcher needs
to apply no extra discretion than for a regular nonparametric regression. Porter
(2003) developed the asymptotic theory for the local polynomial estimator of the dis-
continuity in the regression discontinuity design. His method is to estimate the right
and left limits of the discontinuous function at the point of discontinuity using local
polynomial regression, and he derives results for arbitrary choice of the polynomial
degree. This part provides the extension of his results to the partially linear case, in
which the dependent variable in the local polynomial regression, Y; — ZI'4™, contains
a plugin estimator of the parametric component. Though from an asymptotic point
of view the extension is very simple, this section explicits the variance terms up to the
O(h) magnitude, which requires the careful consideration of the covariances between
the parametric and nonparametric parts of the estimation. Moreover, the results are
presented for a generic nonparametric plugin for E(Y; | X;) and E(Y; | X;), so that the
plugins can be estimated with other, sometimes more practical, techniques such as
series estimators.

The second difficulty is that zy is a point with positive probability in X. The
available theory on local polynomial estimators relies on the existence of a density
function in a neighborhood of x3. However, when using local polynomial estimators
to estimate the limit of a function at a point, the observations at the point itself
are not used. In fact, although Porter (2003) requires the existence of a density
function, the proofs do not use the entire support of dF'(z) at once, but rather separate
the observations to the right and to the left of xy. This section adapts Porter’s
result using distribution functions conditional on X; # =z, which have a density
function by assumption, though with possibly different right and left limits at zy. As
a consequence the same results as in Porter (2003) can be derived in terms of limits,
therefore generalizing Porter’s results to allow both for the positive probability of
X; = z, and also for the density function of F(X;|X; = x) to have different right
and left limits at zy. It is important to notice that because the limits may be different,
the variance estimator suggested by Porter in theorem 4 cannot be used in this case.
Theorem 7.5 below proposes a different estimator which allows for the different right
and left limits of the density at x.

If 2y is an interior point, or is at the left boundary of the X, the estimator 77 (zo)*
is defined in the following way. Given the kernel function £, the smoothing parameter
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h, the polynomial degree p, and let ag, a1, ..., a, be the solution the problem
a(fm%pﬁ Z k ( ) 1(X; > 20) [V;—Z] 4t —ao— a1 (Xj—x0) — ... —ap (X —x0)")?,
the local polynomial estimator of 7 (x¢)! is given by

#H(wo)t = ag = el (XTDTX) I XTDH(Y — Z4), (7.10)
where e; = (1,0,...,0)" has dimension 1 X (p + 1), X has rows equal to (1, (X; —
zo),...,(X; — xo)P), for j = 1,...,n, Dt is a n x n diagonal matrix with diagonal
{1(X) > @o) k (B2, ... ... (X, > mo) b (F222) Y = (V,...,Y,)", and Z =

(Z, ... Z,)F. If zo is at the right boundary of X, the estimator 7+ (z¢)! = 0.

The next conditions make it possible to obtain the asymptotic distribution of B,

given in equation (7.8). The essence of the proof can be understood by observing
that when 77 (z)! is defined as in (7.10),

#H(wo)t = (XTDTX)IXT DT (Y — Z4T) (7.11)
= eI(XTDTX) ' XTDNY — Z7T) — el (XTDTX) XTI DTZ(3T — 471),

Define
P (zo)t = I (XTDTX) ' XT DT (Y — Zy 7).

7F(z0)" is a simple local polynomial estimator of a boundary point seen, as discussed,
in Porter (2003), but also examined in Fan and Gijbels (1996). Deriving its asymptotic
distribution in this case needs only a small modification to account for the fact that
X does not have a density function, since P(X; = zy) > 0. It converges to a normally
distributed random variable at the rate v/nh. The second term can be considered
jointly with the second term in equation (7.8), which converges at the rate y/n. For
testing in smaller samples, the results consider the effect of the estimation of v+
and v~. However both the bias and variance of 7+ (z¢)! and 77 (2)" dominate the
asymptotic behavior of 0.

Assumption 7.3.

1. E(lg(Z)|?*%2 | X; = x0) < oo and E(||g(Z:)Z;||>T2 | X; = x0) < oo, for some
& > 0.

2. If xq is an interior point in X, then the estimators 4t and 4~ are defined as

= (202,)ITY = (2527

Yii = (Vi = B(Y; [ X;)F)1(X: > o), Yoo = (Y; = E(Yi]| X;)))1(X; < mo)
Ziy = (Z; — E(Z | X)) M)1(X; > x0), Zio = (Z; —B(Z; | X;))1(X; < x0)
E(Y; | Xi)* = X0 1(X; > x0) Jj

i E(Y; | X))~ =0, 1(X; < @0) T,V
Z;

T
~ ‘] ~
E(Z;| Xi)* =7, 1(X; > x0) T7 E(Z; | X))~ =0 WX < x0) T} 7,

j=1
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for some TJr and T, ; which are a function exclusively of the observations such

that X; > xo and Xi < xo respectively. Additionally, sup, Z;;ll(Xj >
o) Ty — (ui|x)H = 0p(1) for w; = Zi, @ E(Z | X)) ZE(| X,) and
E(Z; | X;)E(e? | X;). 4" and 4~ satisfy
At — AT 0 Vi o o0
\/ﬁ[’}_—”y_-lin/\f [0],[ 0 V;y 0 | :
Al e e

and there exist l>+ and VW, functions exclusively of data for which X; > xg
and X; < ;Eo respectwely, and such that V+ 2 Vi oand V 2 V.n- Moreover,

E(||lvr(aT —5)?) and E(||vn(3~ —y7)||*F 3) are umformly bounded for

all n-and some & > 0. If g is the left boundary of X, all is true except that
~ =0,V =0, and V :AO. If zq is the right boundary of X, all is true except
that ¥* =0, V7 =0, and V] = 0.

. There exist x~, " € R, with x~ < xy < " such that F(x) is twice continuously
differentiable in [x_ , xo)U(zo, x1] with first derivative bounded away from zero
and second derivative uniformly bounded in [x_ , x) U (o, x]. Define

¢($0) = hmxlzo d ( ) ¢($0)T = hma:Two %f(‘f);
§(20)! = Ty, 5 F(2), §(z0)! =ty 5 F(2),

then all of these quantities exist. Moreover, there exist &(xo)l and qg(a:o)l, con-
sistent estimators of ¢(xo)' and ¢(xg)* respectively (see remark 7.2).

. The function 77 (X) is at least p+2 times continuously differentiable in (xq, x™],
and the function 77 (X) is at least p + 2 times continuously differentiable in
[z, x0). Define

T (20) 1= limy 4y Lo71(X), 77 (20)" 1= limy 4y L7 (X),
then these quantities exist form =1,...,p+ 2.

. The variances o*(x) := E(e? | X; = z) are at least p + 2 continuously differ-

entiable in [, x0) U (zo,xt]. The errors €€ = 2 — 02(X;) have moments

E(|e"|*4 | X;) uniformly bounded for some & > 0. Define
o?(zo)t = lim, |, 0%(x), o?(z0)! = limgy,, 0% (),

then these quantities exist.
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6. The kernel k is symmetric and has bounded support. For all j odd integers,
[k (u)u/du = 0. Define v; = [;° k(u)vw/du and w; = [;° k*(u)u/du, then

’Uj |- ’Uj . Uj—I—p -| wj wj e wj+p -|

LT z |,Aj:{ s s J,QJ:{ s JQT s z |
Uj+p Yitp -+ Ujt2ptl Wi+p Witp -+ Wit2p+1

7. lim, o h = 0, lim,,_oo nh = 0o, and lim, .., h*™'\/n < cc.

8. The functions E(Z3| X; = x) and E(2Z¢| X; = x) are at least p + 2 times
continuously differentiable in [x~,x0) U (xo,2T]. The € := Z; — E(Z; | X;) have
moments E(|[eZ||*T4 | X;) uniformly bounded for some & > 0. Define

E(Z; | X; = zo)t := lilm E(Z;| X; = ),
xrlTo
E(Z;i| X; = x0)! := liTm E(Z;| X; = ),
xlxo
B(Z;Z] | Xi = wo)! = lim E(Z:Zl'| X; = ),
xlxTo

(

(
E(ZZ] | Xi = 20) = m E(Z,2] | X; = x),
E(Zi€} | X; = o) := glclfgf}) E(Zo*(X;, Z) | Xi = @),
(

E(Zi? | X; = x0)! = liTm E(Zio*(Xi, Zi) | X; = ),
xlxo

then all of these quantities exist. Finally, define the notation

Yo (20)t = B(Z, 21 | X; = 20)t —E(Z; | X = 20)'E(Z; | X; = x)'T
( (

b (gco)T = IE(Z ZE | X = 20)! = B(Z; | Xi = 20)"B(Z; | Xs = o)™
Czez(.To)l = (Z'62 | X = .To)l — E(Zl | Xl = Io)le(Zl'o)l
0262($0)T (Z €; IX = xo)T — E(ZZ | Xl = .To)TO'2(.’L’0)T

9. If xg is the left boundary of X, then o = 1, and if xo is the right boundary of
X, then aa = 0.

Theorem 7.4. If assumptions 6.1, 7.1 and 7.3 hold, then

VhV; 20— 0 — B,) % N(0,1),
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where
By = B(g(Z0)| X: = 20) [ + (1 - )8, ]
Pt T AL o), if p is odd,
B = P+ (o )lim gl (o)l _
W [ (p+(1)?) (Z)((z(;)))l] e Ao (Tprz = Mo Tpi)
p+2 z lim _ . .
e e o

and analogously for B, , substituting the “+” by “—7 in the notation.

Vo =a?[Vi+ 2VhCICE + hCTVICL| + (1= ) [V; + 2VRCTC + hCTV; O]
+ hVa + o(h),
where if o is an interior point or is at the left boundary of X,
Vi =E(g9(Z) | Xi = x)°V7,
o*(x9)"

P(wo)t
Cy = E(9(Z)Z; | X; = m9) — E(9(Z:) | Xi = 20) E(Zi | X; = o),

Cl = (S (20)')

V+ = eiFA(;lQAglel,

Cre? (xO)la

and if xy 1s an interior point or is at the right boundary of the support of the X;, V.,
V_, C_ and CZ, are defined analogously, substituting the “+7 by “=" and | by 1 in
the notation.

The proof is in section B.3.1 in the appendix, though the nature of it was already
discussed in the beginning of this section. The following definitions concern the
estimation of the variance V,,. Define the operator

Pt =l (X"D*X)'XTDT.

Then, observe that 7(zo)' = P"(Y — Z5%). Whenever z; is an interior point or is

A

the left boundary of X, the quantities C,, 3, (xo)!, c.e2(20)! and 62(xp)! are defined
in equations (7.12)-(7.14) below:

E(Z;| X; = z0)' = (P 2)",
Cy = aR(9(Z)7Z: | Xi = w0) — B(9(Z) | Xs = w0) E(Zi | Xi = 20)*. (7.12)
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VAVAS PrUy ... PUy
Let Uls = s E(ZZZZT | Xz = Io)l = s then
VAN PfUs ... PfUy
S (x0) = B(Z:Z8 | Xi = 20)t — B(Z; | Xi = o) E(ZF | X; = 20)*. (7.13)

(Y1 = Z{9*)*zf
Let Rf = : , then
(Yo = Z33") 2y
E(Z;(Y; — ZAT)? | Xi = 20)t = P RLT,
Eser(mo) = B(Zi(Y; — ZAD)? | Xi = 20)' =B (Z; | Xi = 2o)'E((Y; — ZAH)? | Xi = x0)*.

(7.14)
(Y1 — Z{4")?
Let Rt = : , then
(Yo = Z3 ")
B((Y; = ZA%)? | Xi = mo)t = PP RY
5% (z0)t = E((Yi = Z/47)? | Xi = wo) — (7 (wo) ™ *)". (7.15)

Finally, if z is an interior point or is the right boundary of X, then C_, 3. (z0),
C.e2(20)" and 62(x)! are defined analogously, substituting “+” by “” and “|” by “1”
in the notation.

Theorem 7.5. Under Hy: X; is exogenous, 0 = 0 and V4 = 0. If assumptions 6.1,
7.1 and 7.3 hold, then if

Va=0? [V +2VhCTCE + hCTVICL| + (1 - a)? V7 + 2VACTCo + TV C_

where
Ai = E(g(%) | X _x0)2v+ V7 =E(g(Z) | X = 2o)?V,
)+ = J—(ﬁ( ) TA019 Ag'ler, V= J—Lij( Ay QA e,
_ —1,
( ) Cze2(x0)l C_ ( (xO)T) 0262(£L‘0)T,

then Vo, — Vi, = 0,(1).

The proof is in section B.3.2. The following theorem gives the discontinuity test
properties in the partially linear case.
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Theorem 7.6. Let 0 < A < 1, ® be the standard normal cumulative distribution
function, and ¢y = ®~*(N\). If theorems 6.1, 7.4 and 7.5 hold and v/nhh?** — 0 as
n — 00, then under Hy: X is exogenous,

~

P(\/nh i <c,\>—>)\ as mn — o0.

~

Vn
moreover, if result 1 is true, under Hy: X is endogenous,
— 0
P nh/iA
Az
- 0
and under the local alternatives T

>c,\)—>1 as mn — oo,

P \/nhiASC,\ — P | ey — i as mn — 00.
Y, Va2Vt + (1 — a)2Vr

The proof is offered in the appendix section B.3.3. Observe that the variance
of the estimation of the nonparametric terms 77 and 7" is the only variance that
affects the local power of the test in large samples. This occurs because the other
components in V, are o(nh), or more specifically, O(nh?/?).

Remark 7.2. The estimation of ¢(x)" and ¢(xo)! is not a trivial application of
the literature of density estimation. When estimating limits of densities at bound-
ary points, the same concerns as with the estimation of conditional expectations at
boundary points arise, so quS(mo)l and ¢(xzo)! must be chosen mindful of their boundary
properties. Although local polynomial estimators have excellent boundary properties,
they cannot be naturally transformed for density estimation, as it can be done with
kernels. One solution is to estimate ¢(xo)" with boundary kernels, as in Jones (1993).
The application section uses a different approach, based on the estimator proposed in
Lejeune and Sarda (1992), which consists on the local polynomial regression of the
empirical distribution function F(XZ) on X; using only observations such that X; > 0.
The coefficient of the constant term is an estimator of lim, ., F(x), but the coefficient
of the linear term is actually an estimator of lim, 4, £ F(x), which is exactly ¢(zo)t.
Hence, in this case

d(x0)! = eI (XTD*X)"'XTD*F = P F,
where F = (Fy, ..., F,)7, F; =157 1(X; < X;). Analogously for ¢(z)'.

n

7.3 The nonparametric case

Let the conditional expectation be represented by the function f, so that

fy(z,2) =EY;| X, =2,Z; = 2), (7.16)
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and define fy(wo, Z;)' = limg|., fyv (7, Z:), fy(xo, Z:)" = limyys, fy(z, Z;), and sup-
pose that these limits exist for all Z;.

Example 3. (Censoring) Equation (7.16) can be parameterized inside the censoring
model presented in section 6.1. From equation (6.4), observe that for X > 0,

fY(Xa Z) = fl(X7 Zv f2_1(X7Z))
Assumption 6.3 can be modified to serve as a primitive of assumption 7.4 (3).

In this case, E(Y; | zo, Zi)' = fy (w0, Z;)*, and E(Y; |0, Zi)" = fy (20, Z;)!. Hence,
E(Y; | 20, Z:) = flwo, Z;)', and E(Y; |20, Zi)! = = flxo, Z;)!. Define E(g(Z)| X; =
7o) = 5w i 9(Z)1(X; = x) and E(9(Z:) 2| Xi = w) = o i (X =
x0)9(Z;)Z;, then equation (7.3) cannot be simplified as in the previous cases. The
present case will assume that the Z; are random variables which can take a finite
number of values. Similar results could be derived when the Z; can take a countable
number of values, and also when the Z; are continuous or mixed random variables.
The decision to present results in the finite case has the advantage of the simplicity,
but is also done for practical reasons, as is explained in remark 7.4 below. The fol-
lowing exposition refers to the estimation of fy (o, Z;)*, and fy(zo, Z;)! is estimated
analogously.
Let the Z; € {2',..., 2™}, and define the estimator of fy (zg, 2™)! in the following
way. Given the kernel function k, the smoothing parameter h, the polynomial degree

p, and let ag, ..., a, be the solution to the problem
1 X. —
min — >k (ghffo> 1(X; > m0) [V — ap — a1(Xj — 20) — ... — ap(X; — m)P]*.
a0,--ap 7,

If xo is an interior point or is the left boundary of X', the local polynomial estimator
of fy(xg,2™)! is given by
flzo, 2™ = a9 = T (XTDEX)'XT DY, (7.17)

where e; = (1,0,...,0)” has dimension 1 x (p + 1), X has rows equal to (1, (X; —
zo), ..., (Xj—mxo)?), j =1,...,n, D} is anxn diagonal matrix with diagonal elements

(7 =100 > o)k (Bs) 17, = 291K, > 20) b (%5225) |, and

Y = (Y4,...,Y,)T. If 4 is the right boundary of X, then f(xq,z™)" = 0.
= (

Let pit = (X5, 1(X; = 3:0))_1 ", 1(Z; = 2™)1(X; = x0) be an estimator of
poi=P(Z; = 2™ | X; = x), hence

M
Zﬁ NG 1—ozz g(z™).

The next assumption provides conditions that allow the derivation of the asymptotic
distribution of B,,.
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Assumption 7.4.

1. dF(z,2™) >0, for allm and x € (x~,27) N X (see remark 7.4 below for when
this condition fails).

2. There exist x—, 2" € R, with x~ < xy < % such that P(X; < x, Z; = 2™) is
twice continuously differentiable in X with first derivative bounded away from

zero and second derivative uniformly bounded for X in (x_ | xo) U (zq, x7) and
all m. Define ¢(xg, z™)" = limy,, LP(X; < z, Z; = 2™), ¢, 2™)! =
limgm L P(X; < 2, Z = 2™), ¢(20,2™)" = limy p L P(X; < @, Zi = 2™),
and ¢'(xg, 2™)1 = limgq,, %P(Xi <z, Z; =2™), then all of these quantities
exist. Moreover, there exist gz@(xo,zm)l and é(xg,zm)T, consistent estimators of
d(xg, 2™)F and ¢(xg, 2™)! respectively (see remark 7.3 below).

3. The function fy(x,z™) is at least p + 2 times continuously differentiable in
X in (27, 20) N (zo,2T) for all m. Define fU(zp)" = lim,,, C2"1—;1]";/(%,2””‘),
and fO(zg,2™)1 = limg,, %fy(x,zm), then these quantities exist for | =
1,...,p+2 and all m.

4. The variances o*(z,z™) = E(e? | X; = x, Z; = 2™) are continuous in (x_ , xo)U
(zo, xT), and the limits o?(xg,2™)' = limg,,, o*(x,2™) and o*(xo,2™)! =
limg ., 02(z, 2™) exist for allm. Moreover, the moments E(|é2|*™%¢ | X; = z, Z; =
2™ are uniformly bounded for some & > 0.

5. The kernel k is continuous, symmetric and has bounded support. For all j odd
integers, [ k(u)u/du = 0.

6. lim,, oo h = 0, lim,,_,oo nh = 00, and lim,_.. "»*'v/nh < co.

7. If xg 1s the left boundary of X, then o = 1, and if xq 1s the right boundary of
X, then a = 0.

Theorem 7.7. If assumptions 6.1, 7.1 and 7.4 hold, then
VnhV; 20— 0 — B,) 4 N(0,1)
where

M
Bu= 3 b 9(z") [aB), + (1= a)B,, ]
m=1

+(p+1) (fo Z'm)lim
K

ang (1) elTAalTpH + o(hPT), if p is odd,
B’;:’»L’n = f+(P+1) z0,2™ lim 202 .
’ hs { Lo Z((xg,’zm))i} e1 Mg (Tpro — A i)
f+(17+2) (xO Zm,)lim T —1 9 ) .
b [ AT, o), ifp s even,
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and analogously for B, ,,, just substitute the “+” by “=7" in the notation. Finally,

Ao, A1, Ypi1 and Yoo are defined in assumption 7.3 (6).

Vo=V + hV4+o(h),
M
V=3 (") gz")? [a®V} 4+ (1—a)?V;],
m=1
2 m\]
+_‘7($07Z) TA-10) A—1
YT g, et e
and analogously for V.., just substitute the “+7 by “—7 in the notation. Finally, )

is defined in assumption 7.3 (6).

The proof is in section B.4.1 in the appendix. Its essence can be understood by
observing that, since M is finite, the asymptotic distribution of B, as defined in
equation (7.3) can be trivially derived if the convergence of the I'(z™)* and I'(z™)~
is ascertained. Since each z™ has positive probability in a neighborhood of zg, the
results in Porter (2003) can be applied with the same modifications as in the partially
linear case to account for the fact that xy is a mass point.

The estimation of the variance depends on the estimation of o%(zg,2™)! and
02(xg, 2™)t. This step requires the estimation of the residuals. Define the opera-
tor

Pl =el (XID}H X,) ' XID! .

t,m,x

where X, has rows equal to (1,(X; — z),...,(X; — x)?), and Dj,, is a diagonal
matrix with diagonal elements equal to {l(Xl >xy, Z1=2")k (%) e (X, >
xo, Zn=2")k ( @) } Whenever g is an interior point or is the left boundary of

X, flzo, 2™ = P Y, and 6%(x0, 2™)! is defined in equation (7.18) below. Define

1m0
FH(X, ™) = PrLY
& =Y~ [1(X,, Z)
R=((1)%.... (&))",

6* (w0, 2™ = P, . R (7.18)

and if zg is the right boundary of X, 62(xg, 2™)! = 0. Analogously for 62%(xq, 2™)T,

substituting “4” by “-” and “|” by “1” in the notation.

Assumption 7.5.

1. The variances o(x,z™) are at least p + 2 times continuously differentiable in
(z_, 20)U(wo, xF) for allm, and lim,,, d Vo?(x, z2™) and lim,,,, d Vo?(z,2™)
exist forl=1,....,p+ 2 and all m.
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2. The moments E ((612 — 02X, ZWV | X =, Z; = zm) are continuous and uni-

formly bounded in (x_ , xo)U(xqg, x1), and the right and left limits when © — o
exist for all m.

3. hn'/3(logn)~'% — oo

Theorem 7.8. Suppose assumptions 6.1, 7.1, 7.4 and 7.5 hold. Under Hy: X; is
exogenous, § =0 and V4 = 0. Then

VihV V20 — B,) % N(0, 1),

where o
. N o\ 2 m A ~
V=V := Z (pgcg) g(Z )2 [QZV;FL + (1 - a)QVm]
m=1
with
. ~92 m\ | . ~2 m\T
V= W—’Z)eanlg Ajler, and V= O—A(%—’z)eiﬁAglﬂ Ajte
¢(£L'(), Zm)l d)(an Zm)T

The proof is in section B.4.2. It relies on Masry (1996)’s result about the uni-
form convergence of the local polynomial estimator applied to the estimated ¢Z. The
following theorem gives the discontinuity test properties in the partially linear case.

Theorem 7.9. Let 0 < A < 1, & be the standard normal cumulative distribution
function, and ¢y = ®~1(N\). If theorems 6.1, 7.7 and 7.8 hold and v/nhh?™ — 0 as
n — 00, then under Hy: X is exogenous,

~

IP’(\/nh 0 <c,\>—>)\ as n — oo.

~

Vn

moreover, if result 1 is true, under Hy: X is endogenous,

]P’<Vnh\/iA_>c>\> —1 as n— oo,
Vi

- 0
and under the local alternatives T

0 0
Pl vnh—— <c d (c — —) as n — o0.
( V., A) T\ W -~

The proof is offered in section B.4.3.
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Remark 7.3. The estimation of ¢(zo, z2™)' can be done as in the partially linear case
(see remark 7.2), following the approach proposed in Lejeune and Sarda (1992). The
values F,(x) = Lyn 11X < 2)1(Z; = 2™) are consistent estimators of P(X; <
x,Z; =z"). The appmach consists on the local polynomaial regression of the function
Fm(Xl) on X; at xg, using only observations such that Z; = 2™ and X; > xq. The
coefficient of the constant term is an estimator of lim,|,, P(X; < x, Z; = 2™), but the
coefficient of the linear term is actually an estimator of limg 4, %]P)(Xi <z, Z=2"),
which is exactly ¢(xg, z™)*. Hence, in this case

QAS(J"O’ ) - P2+m moﬁ my
where F,, = (Fo(X1), ..., Fpu(X0))T. Analogously for ¢(xo)!.

Remark 7.4. The measure v in 0 = [ G(A(Z), Z)dv(z) is chosen by the researcher.
The measure chosen for the derivation of the estimators is F(z | X; = xo), and from
that derives the requirement that if P(Z; = 2™, X; = x9) > 0, then for estimation
purposes it is necessary that dF (xz,z"™) > 0, for all X in a neighborhood of xo. All
the results can be derived in exactly the same way if the measure chosen is F(z| X; =
10,2 € A), where A is a finite subset of A = {z; dF(x,2z) >0, Vo € (z7,27) N X},
as long as A is not empty. Hence, A, and B, in equations (7.2) and (7.3) are
substituted by

- Z A(Z 1(X; = 20, Z; € A) — E(A(Z)g(Z:) | Xi = w0, Z; € A)
pxo .A n =1
Z (1- a)f(Zi)’]g(Zi)l(Xi = Ty, Z; € A)-
pwo AT i=1
where P, 1 = % n (X = w0, Z; € A). Assumption 6.1 remains the same, assump-

tion 7.1 remains the same, except for the new definition of Va := Var(A(Z;)g(Z; | X; =
1o, Z; € A), and assumptions 7.4 and 7.5 remain the same as long as {z*,...,2M} =
A. The results in theorems 7.7, 7.8 and 7.9 remain unchanged.

FEven when the dF (Z;) does not have a finite support, the discontinuity test using a
measure v that integrates over a finite subset of the support of the dF(Z;) may be valid.
For example, the same approach as above can be used when the support of dF(Z;) is
countable, on when it is continuous but there exists a subset of values Z such that
P(Z; = z) > 0. Define A= {z;dF(z,z) >0,Vz € (z,2")NX,P(X; =2, Z; =
2) >0, and P(X; € (z7,2")\{z0}, Z; = 2) > 0}. Define A = {z',...,2™} C A.
As long as A # 0, the procedure and the results hold exactly as in the case above.
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Chapter 8

When X i1s a discrete r.v.

When assumption 6.1 (1) fails, it is no longer possible to test the endogeneity of z
from the discontinuity of E(Y | X =z, Z) in z at xg, because lim, |, E(Y | X =z, Z)
and lim,,, E(Y | X = ,Z) are not defined. However, it is still possible to test
endogeneity if one is willing to make assumptions on the variation of E(Y | X =
x, Z,Q) for given changes in x. This test will be undersized.

Assumption 8.1. There exists a bounded neighborhood N of xq such that P(X €
M\{z0}) >0, and for all x,2’ e N, x # 2, and all Z and Q,
_B(Y|X=22.Q) - E(Y|X =+.2.Q)

bL\ <bU

x—a
Moreover, the sets Z, are identical, Vo € N .

Theorem 8.1. Let N := N N (xg,0), and suppose that P(X € N) > 0. Let pu be
a known measure in N*. Define

JUUEY | X, Z2)du(X) —E(Y | X = 29, 2)]| dv(Z)
[ X dp(X) — o '

If assumption 8.1 holds, then, if X is exogenous, by, < 0 < by.

9:

This result is a simple consequence of the definition of the exogeneity of X, as
seen in definition 1 in section 6. This condition is valid even when X is a discrete
variable.

In order to build a test of endogeneity, suppose that pu(X) = F(X | X € N), and
as in the previous cases, v(Z) = F(Z | X = xp). Then

9_E(E(Y|XeN+,Z)|X=x0)—]E(Y|X:xO)
B E(X|X e Nt) —x ’

which is a desirable parameter from which to build a test statistic, because it elimi-
nates the need to estimate E(Y | X = xq, Z). Moreover, 6 can be identified even when
the support of the distribution of X is not continuous.
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There are many approaches that could be taken in order to build a test statistic
using 6 as the reference parameter. In particular, it is direct to build the test so that
the test statistic converges under Hy at the \/n rate, even when E(Y | X, Z) is only
nonparametrically indentifiable. This happens because 6 aggregates over a positive
probability subset of the distribution of X. This section develops a test which assumes
that E(Y | X, Z) is linear in X and Z.

Assumption 8.2. For X € N"\{zo}, E(Y | X, Z) = X + Z7~.

In this case,
CEBEX|X eNT)+ZTy| X =x) — Bag —E(Z | X = 20)y
- E(X|X € NT) — a0
CBEX|X eNNHE(Z|X =x)'y— Bag—E(Z| X = 20)Ty
B E(X|X e Nt) —xq

6

=p
The test statistic is hence the method of moments estimator of 3, which is the same

as the estimator of 3 in a partitioned OLS regression of Y on X and Z using only
observations for which X € N'*:

0 = (X"D(I — P,,)DX)"'X"D(I — P,,)DY

where I is the n x n identity matrix, P;, = DZ(Z"DZ)™'Z"D, X = (Xy,...,X,)",
Z is a matrix with rows equal to Z1, i =1,...,n, D = Diag{1(X; € N"\{z0}),...
o 1(X, € NP\{x0})}, and provided both XTD(I — P,, )DX and Z" DZ are invert-
ible.

Assumption 8.3. Suppose
1. The (Y;, X3, Z;), i =1,...,n are i.i.d
2. Let ¢; :=Y; —E(Y;| Xy, Z;). Then, Var(e; | X;, Zi) = o2 for all X; € N™\{x},

1=1,...,n

3. Let W; := (X;, ZE)T, then E(W,WI1(X; € NT\{x0})) ewists and is invertible.
Moreover, B(Z;ZF'1(X; € NT™\{z0})) is also invertible.

Theorem 8.2. If assumptions 8.2 and 8.3 hold, then
V(- 0) 5 N(0,V),
as n — oo, where
V =o? |E(X?1(X; € NT\{x0}))—
—E(X; Z'1(X; e NP\ {2 }))E(Z:ZF1(X; € NP\ {x0}))
E(ZX1(X € N\ aoh)]
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Moreover, let R
V =62(X"D(I - P, )DX)™!
with

52 = (Z 1(X, € N+\{x0})> s

=1
where ¢ = (I — DW(WTDW)*'WTD)Y and W = [X Z]. Then,
vVEvy
as n — oo

The proof of the theorem is similar to the proofs of the convergence of the classical
partitioned OLS estimator, and is given in appendix B.5.1.
Let
Hy: X is exogenous,

and
H,: X is endogenous,

the discontinuity test of endogeneity will reject Hy if 6 < b, —cy /2@ or 0 > by +

Cx/2 \/g , for a positive scalar c)/, which will be discussed soon. In order to establish
the size and power against H; of this test, consider the following theorem

Theorem 8.3. Suppose that assumptions 8.1, 8.2 and 8.3 hold. Then, under Hy, if
)\L < >\U;

]P’(é < b, —C>\/2\/E or 0 > by + ¢x/2 K) ~
n n

(5 (35) o) 1170 ({55 o)

as n — oo. Under Hy, if A\, < 0 < Ay, then

P(é<bL—C)\/2\/g 0Té>bU+CA/2 %) — 0

asn —o0o. If B= A or B = Ay, then

. Voo 1%
]P’<9 < bp, — c,\/g\/; or 0 > by +C)\/2\/;> — \/2

as n — oo. Finally, if 6 < Ay or 8> Ay, then

P(é <br— cA/Q\/E or 0 > by + cA/Q\/E> —1
n n
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If ¢y/2 = ©71(N\/2) is the critical value associated with the confidence level 1 —\/2
in the normal distribution, theorem 8.3 shows that the test is undersized, in the sense
that under Hy, it rejects Hy with probability smaller than A. The test has non-trivial
power agains Hy if 3 < Ap or 8 > Ay. The proof of this theorem is offered in the
appendix section B.5.2.
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Chapter 9

Applicability of the discontinuity
test

The main assumption that guarantees that the discontinuity test is well defined is
that E(Y | X, Z, Q) is continuous in X. Continuity is a phenomenon often argued in
the literature, so this paper will not be concerned with when this assumption is valid.
The non trivial power of this test depends on further assumptions, and the sufficient
condition presented in chapter 6 requires that dF(Q | X, Z) be discontinuous in X at
X = z(. Since this is not a condition commonly seen in the literature, this section
will discuss when it can be encountered, and how it can be argued.

For the examples that the author has considered, the common characteristic is
when X is a variable which presents a non-random concentration of observations
at a known value X = x(, or to one side of xy. Depending on the reason for the
concentration, it may be possible to infer that the observations at xy are distributed
discontinuously different from the observations nearby.

A natural cause of concentration is censoring, i.e. when X cannot assume values
above or below a certain value xy. The example examined in part III is one such
case. Suppose that X denotes the amount smoked per day. Since one can smoke
any fraction of a cigarette, X is a continuous r.v. which cannot assume negative
values. In the dataset discussed in chapter 13, more than 80% of the observations are
concentrated at z = 0 (see appendix section C), so it is natural to suppose that the
distribution of the characteristics of these observations is discontinuously different at
x = 0 compared to those for which z > 0.

Though it is not possible to show that dF(Q|X,Z) is discontinuous in X at
X = xg, it is possible to show that dF'(Z,| X, Z_4) is discontinuous in X at X = o,
where Z¢ is one of the covariates, and Z_g4 is the vector of the remaining covariates.
A formal test of this condition could be, for example, to test for the discontinuity of
the mean of the distribution of Z;. This can be done by performing the discontinuity
test of endogeneity, but substituting E(Z,| X, Z_,) instead of E(Y | X, Z). Chapter
12 in part III does not perform such a formal test, but shows heuristic evidence that
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E(Z;| X) is discontinuous at X = 0.

If the data plots in chapter 12 are accepted as evidence of the discontinuity of many
of the observable covariates in the structural function, it may be acceptable to infer
that the same phenomenon happens with the unobservable ). This line of argument is
similar to the one used, for example, in the regression discontinuity literature to show
that the observations cannot influence in which side of the threshold they are located.
It is common practice in those cases to show that the observations seem to have the
same frequencies at both sides of the threshold (See McCrary (2008) for a formal
frequency test in the regression discontinuity context), and are similar with regard to
the observable covariates (see for example Lee (2008)). A comparable approach is also
adopted in the experimental literature to argue that the unobservables are equally
distributed among the treatment and control groups: by showing that the two groups
have the same distribution with regards to the observable characteristics, it may be
acceptable to assume that the same happens with the unobservable characteristics as
well (see for example LaLonde (1986)).

Censoring examples are commonly observed when the potentially endogenous vari-
able X is a consumption good, which cannot be chosen in negative amounts, as is
the case when X is the daily number of cigarettes smoked. In that case, the argu-
ment is that the observations at zero are discontinuously different from the obser-
vations at positive amounts. The discontinuity may exist because among everyone
who chose zero there are not only those who would have optimally chosen zero in an
unconstrained problem (who could indeed be similar to those who chose immediately
positive amounts), but also those whose would have chosen negative amounts if they
could (which can presumably be very different from those who chose immediately
positive amounts). Other examples where censoring is naturally generated are X =
commute time, or X = hours of work. Censoring can be artificially generated, for
example by law imposed restrictions, such as minimum age required to drop out of
school when X = years of education, or minimum wage when X = hourly wage.

Censored variables are just one example where selected concentration happens.
Another instance of this phenomenon is when the potentially endogenous variable is
a choice variable for which default values are specified. Standard contracts is one such
case. For example, if X = contribution rate on the 401K, the observations at the
standard level may be discontinuously different from the observations at the tailored
levels near the standard level (see Madrian and Shea (2001)). Another case is when
there are social norms that stipulate that one choice is the default. For example, if
X = division of bequest among progeny, the social norm clearly dictates an equal
division of the be quest among the progeny (see Wilhelm (1996)). Finally, there are
instances where concentration happens because of some discontinuity in the incentives
for people to make different choices. For instance, Saez (1999) shows evidence that
taxpayers seem to concentrate in the first kink point of the US income tax schedule
(i.e. where marginal rates jump from 0% to 15%).
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Chapter 10

Conclusion of Part 11

This part developed a nonparametric test of endogeneity which does not require
instrumental variables. The two crucial assumptions for the applicability of the test
are that the distribution of the unobservable conditional on the observable variables
be discontinuous in the potentially endogenous variable at a known point, and that
the structural equation relating the dependent variable and the observables be con-
tinuous in the running variable. The test consists in estimating the size of such
discontinuities, averaging them over a given distribution of the covariates, and then
testing for whether this average is equal to zero.

Part II provides test statistics and asymptotic distributions for the average of the
discontinuities multiplied by arbitrary functions of the covariates, averaged over the
distribution of the covariates at the threshold. This type of test eliminates the need
of nonparametric estimation of one of the components of the parameter which is the
basis of the test statistic. The estimation of the discontinuities is done for three
different specifications of the conditional expectation of the dependent variable given
the covariates when the running variable is different than the threshold. The first
assumes that it is linear, the second that it is partially linear (nonparametric in the
running variable and additively linear in the covariates), and the third that it is fully
nonparametric, although with certain smoothness conditions. The test statistic is
shown to converge at /n rates, where n is the sample size, in the linear case, and at
the rate v/nh in the partially linear and nonparametric cases. This rate is the same
as that of a nonparametric regression with a single right-hand side variable, and this
is achieved in spite of the presence of the covariates due to the aggregation over the
measure of the covariates.

The estimation has to be sensible to the boundary nature of the threshold, even
when it is not in fact a boundary point in the domain of the running variable. This
is the case because this dissertation allows for the functional forms, as well as condi-
tional distribution functions, variances etc., to be different at the right and left sides
of the threshold. Hence, the threshold is treated as a boundary point in all cases,
and estimation has to be mindful of boundary biases. The nonparametric estimators
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use the local polynomial method, known for its automatic boundary carpentry and
low bias. In that regard this dissertation is in accordance with the regression dis-
continuity literature, which uses the same kind of estimator. However that literature
also assumes that the probability densities are continuous across the threshold, while
this part allows for differences at the different sides of the threshold, which requires
different estimators for the variance of the estimator.

Part II also presents a test of endogeneity developed for cases where X is a discrete
variable. If it is reasonable to assume that the function f has bounded variation, and
an upper and lower bound of such variation are known, then it is possible to build an
undersized test of endogeneity. The test presented assumed that the expectation of
Y conditional on X and Z is linear, and provided the test statistic and asymptotic
distribution of the test based on that assumption.

The final chapter of part II discussed the applicability of the discontinuity test,
particularly in what concerns the power of the test. The chapter considered in which
situations it is reasonable to argue that the distribution of the unobservable () con-
ditional on X and Z is discontinuous in X at a known point xy. The driving charac-
teristic of the many examples is when xg is a mass-point.
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Part 111

The effects of maternal smoking in
birth weight
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Chapter 11

Introduction

The effects of smoking during pregnancy, known as “maternal smoking,” on the
birth weight of the child is an important topic of research in the medical literature for
two main reasons. First, birth weight is seen as the primary measure of the newborn’s
health and as an excellent predictor of infant’s survival and development (see Almond
et al. (2005) p. 1032). Second, early studies about the effects of smoking in birth
weight claimed impressive effects of the order of 500 grams (see Sexton and Hebel
(1984)).

Let the variable C'IG represent the average cigarettes smoked per day by the
mother during pregnancy, let BW be the weight of the child at birth, and let Z
represent a set of d covariates. These include detailed information about the mother,
the father and the pregnancy. The interest is to uncover the causal relation between
CIG and BW, which is expressed in the model

BW =m(CIG,Z,Q) +e. (11.1)
This relation is identifiable in the sense of theorem 6.1 in chapter if
P(m(CIG, Z,Q) =m(CIG, Z,0)) =1

Otherwise, further measures must be taken to account for the presence of (), such as
searching for more complete datasets where hopefully () can be observed, searching
for instrumental variables, proxy variables etc.

The effect of maternal smoking on birth weight is an example where experiments
that randomly and directly change the quantities smoked by the mothers cannot be
generated for ethical reasons. Randomized trials in the field try to influence the
amounts smoked indirectly through some kind of “propaganda” directed to a ran-
domly selected part of the sample. The word “propaganda” will be used here to
denote the set of smoking-related interventions that were randomly provided in such
studies, such as informational phone calls, house visits, etc. A case can be made in
favor of the reduced form effect on birth weight, which consists of the true parameter
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of interest not being the effect of smoking on birth weight, but rather the effect of
the smoking-related interventions on birth weight. However, propaganda can be of
many different kinds, and may have radically different effects in different parts of
the population depending on its content, its way of transmission and its scope. In
this case, the effect of one kind of propaganda on birth weight is not necessarily a
good predictor of the effects of other kinds of propaganda, and therefore the effects of
smoking may constitute a better source of information to use to extrapolate between
different options of public policy. Additionally, smoking rates can be affected not
only through public policy, but also through medical recommendations. These rein-
force even further the importance of knowing the effect of smoking versus the effect
of smoke-related interventions. Moreover, studies that use propaganda to influence
smoking behavior may also affect birth weight through other means, for example by
providing information or raising health concerns that can make all pregnant women
(including those who did not quit smoking) change other behaviors. If the actual di-
rect effect of smoking on birth weight is small, although the estimated reduced form
effect is large, then policy and medical attention directed at smoking may have com-
paratively less effect than the same resources directed at changing other habits, for
example promoting propaganda for pregnant women to stop drinking, to eat better
or to have more frequent prenatal visits.

According to the Cochrane Review (see Lumley et al. (2009)), the smoking ces-
sation interventions in randomized trials had on average a significant but imprecisely
estimated effect on birth weight. On average 6 out of 100 mothers quit smoking be-
cause of the intervention, and the average effect of the intervention on birth weight
is 55 grams, with a 95% confidence interval between 10 grams and 90 grams. This
implies that the effect of smoking cessation on birth weight is around 915 grams,
with a 95% confidence interval between 167 grams and 1500 grams. Sexton and
Hebel (1984), one of the most well-known among such studies, shows a great effect
in smoking cessation (20% people quit smoking because of the intervention) and a
reduced-form effect of 93 grams, with a 95% confidence interval between 15 and 170
grams, implying an effect of smoking cessation between 77 and 845 grams. These
imprecise estimates present an even more ambiguous picture with regard to the rel-
ative importance of smoking cessation and smoke-related interventions. They seem
to be mostly due to small samples. The Cochrane Review (Lumley et al. (2009)),
a systematic review of the field, analyzes 72 randomized trials. These amount to
a total sample size of just over 25,000 observations, with an average of around 350
observations per study.

Due to the difficulties associated with the randomized trials mentioned above,
the literature in the field has focused on non-experimental data sources where large
samples and a wide array of control variables are observed. All these studies rely on
an assumption of selection on observables. Therefore, a test of endogeneity without
instruments is more than a convenience, it is a necessity not only because it can help
in the detection of endogeneity, but it can also contribute to validate a certain choice
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of covariates over another.

Almond et al. (2005) is, to the author’s knowledge, the most exhaustive analysis
of this question using non-experimental data. They provide a detailed analysis of the
costs of LBW using two independent empirical approaches, each employing a different
source of variation on birth weight. The first approach uses variation of birth weight
across twins in order to control for determinants of birth weight that are constant
within a family, such as maternal smoking and gestation period. The second approach,
of interest to this application, uses only singleton births and explores variation on
birth weight due to variation of maternal smoking across families. The authors use
both OLS regressions for a number of different specifications and subclassification on
the propensity score to control for potential endogeneity due to family unobservables
(see p. 1064 in Almond et al. (2005) for details of their method). More specifically,
they estimate the difference in the birth weight and the probability of LBW between
women who smoked and women who did not smoke during pregnancy, using the
population of births of singletons from Pennsylvania from 1989 to 1991. They control
for a rich set of covariates. Almond et al. (2005) compare nonsmoking directly with
smoking mothers, disregarding the actual quantities smoked. They find that the
children born of smoking mothers weigh 200 grams less than those of nonsmoking
mothers, with a 95% confidence interval between 199 and 207 grams. For the case
of LBW, they found that children of smoking mothers are 3.5% more likely to be
of LBW than those of nonsmoking mothers, with a 95% confidence interval between
3.3% and 3.7%.

This part applies the discontinuity test to the full specification in Almond et al.
(2005), using the same data set as in that paper. This part is divided in the following
chapters. Chapter 12 develops the argument that the discontinuity test of endogeneity
of the null hypothesis

Hy: CIG is exogenous in the structural function m
against the alternative hypothesis
Hy: CIG is endogenous in the structural function m

has power against H;. For this it is necessary to argue that the conditional distribu-
tion of the unobservables () that are dependent of C'IG is discontinuous in C'IG at
ClIG =0.

Chapter 13 explains the methodology of the test. It includes a description of the
dataset and all the techniques used to perform the discontinuity test in this problem.
Chapter14 discusses the results of the test.
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Chapter 12

Applicability of the discontinuity
test to C'/G in equation (11.1)

The argument for the applicability of the discontinuity test in the case of the
effects of maternal smoking in birth weight depends on two crucial assumptions. The
first is that the direct effect of smoking on birth weight may be viewed as continuous
(assumption 6.1 (2)).

The second crucial assumption is that any unobservable variable correlated with
CIG conditional on z has a distribution conditional on C'IG and Z that may be viewed
as discontinuous in CIG at a certain value of C'IG (assumption 6.2). Since CIG
cannot be negative, a candidate to be such a threshold is CIG = 0. In more empirical
terms, the requirement is that the mothers that did not smoke during pregnancy
have to be discontinuously different with regard to the unobservable variable from
the mothers that smoked, even conditional on the covariates Z.

Though this cannot be confirmed for the unobservable variables (), this phe-
nomenon can be tested for the observable covariates Z. This heuristic evidence is
analogous to the evidence provided in the applied Regression Discontinuity literature
that covariates are continuous at the threshold, suggesting that unobservables are
also continuous at the threshold. See Lee (2008) for an example. The test would be
essentially the same as the discontinuity test, except that it would be performed with
a variable 2, s = 1,...,d, instead of with the dependent variable Y, and by using
the rest of the covariates as controls. No matter which continuous function of z* is
tested in the discontinuity test, if the distribution of z° conditional on C'/G and the
rest of the covariates is continuous, so should the function be. If some of the z° were
found to be discontinuous at C'IG = 0, this would be understood as evidence that
an unobservable correlated with cigarettes is also discontinuous at C'IG = 0. This is
true unless 2° is a proxy for such a variable, in which case there is no identification
issue in the first place.

The following figures provide heuristic evidence that the expectation of the observ-
able covariates conditional on C'IG is discontinuous at C'IG = 0. It is not possible to
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guarantee from these figures that any of the variables below would still be discontin-
uous conditional on the rest of the covariates. However, if the figures below are taken
as evidence of discontinuities in the expectation of some of the z* conditional on CIG,
then at least one of the z® has to be discontinuous in C'/G conditional on the rest of
the covariates. The figures were trimmed at C'IG = 40, although the observed CIG
goes up to 98. However, CIG = 41 to 98 account for only 0.05% of the full sample,
and 0.2% of the mothers that smoked positive amounts. Table C.1 in appendix C
shows the number of observations for each level of CIG . The dots correspond to the
averages per CIG level and the lines show the 95% confidence interval of the mean
per CIG level for low levels of CIG only. The confidence intervals are shown only
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Figure 12.1: Mother’s education (years)
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Figures 12.1 to 12.4: Horizontal axes represent average number of cigarettes smoked daily during
pregnancy. Vertical axes represent: figure 12.1: mother’s years of schooling, figure 12.2: mother’s
age at child’s birth, figure 12.3: likelihood of mother not being married and figure 12.4: likelihood of
mother being black. Dots represent average values referring to the pregnant mothers for each level
of daily cigarette consumption. The vertical lines represent the 95% confidence interval of the mean.
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for small levels of cigarettes for exposition reasons. The confidence intervals become
larger for C1G > 20, which correspond to only 1% of the full sample (6% of the sam-
ple of smokers). As suggested by table C.1 of appendix C, the confidence intervals
increase as a reflection of the smaller sample sizes per C'IG value. For values of CIG
between 26 and 29, 31 and 34 and 36 and 39, sample size is extremely small per level
of CIG , rarely above 10 and never above 15 observations.

Figures 12.1, 12.2, 12.3 and 12.4 are examples of covariates referring to the
mother’s demographic characteristics where there is a clear difference in the aver-
ages per level of CIG for zero versus just above zero cigarettes. Figure 12.1 shows
the mother’s education in years, with fairly constant averages of a little below 12
years for 0 < CIG < 8 , and increasing one full year of education for C'IG = 0.
Figure 12.2 shows the mother’s age, which averages around 25 years old for low-level
smoking mothers, and increases to 27 among the nonsmoking mothers. The mari-
tal status shifts from 50% of unmarried low-level smoking mothers to only 24% of
unmarried nonsmoking mothers. The proportion of black women among the women
surveyed has higher variation, but is constantly above 20%, and often closer to 30%
for low-level smokers, and is only 14% for the nonsmokers.

The father’s demographic characteristics present even higher differences for low-
level smoking mothers relative to nonsmoking mothers. The education level, shown
in figure 12.5, changes from below 11 years among the fathers of children of low-

Figure 12.5: Father’s education (years) Figure 12.6: Father’s age
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Figures 12.5 to 12.6: Horizontal axes represent average number of cigarettes smoked daily by the
mother during pregnancy. Vertical axes represent: figure 12.5: father’s years of schooling, figure
12.6: father’s age at child’s birth. Dots represent average values referring to the pregnant mothers
for each level of daily cigarette consumption. The vertical lines represent the 95% confidence interval
of the mean.

level smoking mothers to 12.6 years for fathers of children of nonsmoking mothers,
increasing more than 1.5 years of education. Figure 12.6 shows that the average age
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of the father is at most 25 years old for 0 < C'IG < 10, but increases to an average
of 28 years of age among the fathers of children of nonsmoking mothers.

The behavioral characteristics of the mother also seem to change significantly
when comparing low-level smoking mothers to nonsmoking mothers. Around 10% of
the mothers consumed alcohol during pregnancy for all smoking levels until C1G=20,
while only 2% of the nonsmoking mothers did the same. Low-level smoking mothers
on average visited doctors for prenatal visits around 10 times, which is one less time
than in the case of nonsmoking mothers.

Although the behavior of mothers seem to be discontinuously different at zero
cigarettes, some contingencies that may have an influence on mother’s behavior during
pregnancy were not found to be discontinuous at zero cigarettes, such as the gender

Figure 12.7: Mother consumed alcohol Figure 12.8: Number of prenatal visits
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Figures 12.7 to 12.10: Horizontal axes represent average number of cigarettes smoked daily by
the mother during pregnancy. Vertical axes represent: figure 12.7: likelihood of mother consuming
alcohol during pregnancy, figure 12.8: number of prenatal visits, figure 12.9: likelihood of child being
male and figure 12.10: order of the newborn among live births. Dots represent average values among
pregnant mothers for each level of daily cigarette consumption. The vertical lines represent the 95%
confidence interval of the mean.
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of the newborn (constant around 50% of males) and the birth order of the newborn
(constant around the average of second birth).

o AJLb
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Chapter 13

Methodology

This chapter describes the methodology used to test endogeneity in the problem
of the estimation of the effects on maternal smoking in birth weight. The objective
is to produce results that are comparable with Almond et al. (2005). However, their
approach assumes that smoking is a binary variable. This part generalizes their
specification, and assumes that smoking is a continuous variable.

The data set used is the same as in Almond et al. (2005). It is the annual,
linked birth and infant death micro data produced by the National Center for Health
Statistics (NCHS). This rich data set contains information for every newborn in
Pennsylvania between 1989 and 1991 (488,144 observations, 94,205 smokers) such as
mother’s and father’s demographic characteristics, mother’s behaviors during preg-
nancy, mother’s health history and risk factors, sex of the newborn, birth order of
the newborn and whether the newborn was part of a multiple birth (i.e., whether the
newborn is a singleton). The data also contains relevant information such as mother’s
and father’s age, level of education and race, mother’s marital status, foreign born
status, number of previous live births and number of previous births where the new-
born died. Other information includes maternal risk factors that are believed not
to be affected by pregnancy smoking such as chronic hypertension, cardiac disease,
lung disease and diabetes. Finally, the data has information related to maternal be-
havior such as number and timing of prenatal visits, whether the mother drinks and
with what frequency, and number of cigarettes smoked per day (for a full list of the
variables used see note 36 of Almond et al. (2005) in p.1064).

For the implementation of the test, it is assumed that for CIG > 0,

E(BW |CIG,Z) = 7(CIG) + Z1~.

This is equivalent to equation (7.7) with Y = BW and X = CIG. The superscripts
“47 omitted, since in this application zy = 0 is the left boundary point. Though this
specification is not as flexible as a fully nonparametric approach, it allows the use of
a high number of control variables, and therefore the immediate comparison with the
most complete specification of Almond et al. (2005).
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The discontinuity test developed in section 7.2 was performed for the variable
CIG in the structural function of two outcome variables (denoted in the previous
chapters as Y): birth weight (BW) and probability of low birth weight (LBW), defined
as weight below 2500 grams. However, for simplicity the notation of the outcome
variable in the rest of this section will remain BW. The test was performed for
the dependent variables without the covariates, denoted specification I, and for the
most complete specification provided in Almond et al. (2005) (footnote 36, p. 1064),
denoted specification II.

The test statistic is calculated as in section 7.2. The only step in the construc-
tion of the test statistics which is not specified in chapter 7.2 is the estimator of
E(BW; |CIG;) and E(Z; | CIG;) (used in the estimation of ), though some require-
ments about this estimator are made in assumption 7.3 (2). Most kernel based estima-
tors such as the Nadaraya-Watson or the local polynomial, as well as series estimators
satisfy these requirements under roughly the same conditions, but the kernel-based
techniques require one regression per different value of CIG; in the sample, while
the series estimators requires only one regression for the estimation of all the values
required in the estimation of v. A series estimator was therefore preferred over the
kernel-based for practical reasons. The basis chosen is that of cubic B-splines, which
have better local properties than classic global bases such as Fourier or power series
(see p. 446 in Li and Racine (2007)). The knots of the spline basis were chosen to
be 0.5,3.5,6.5,9.5,12.5,17.5,27.5,37.5,47.5,...,107.5. Many other combinations of
knots were attempted with virtually identical results.

Let the p;(CIG;) represent the j-th element in the basis evaluated at CIG; , and
let p be the matrix whose rows are (p1(CIG;)1(CIG; > 0),...,pn(CIG;)1(CIG; >
0)), where N is the number of elements of the basis used in the regression. Let P =
p(pTp)~tp" and I be the n x n diagonal matrix with {1(CIG; > 0),...,1(CIG, >
0)} in the diagonal. The estimator of the variance matrix of 4 is given by

~

v, =nt(Z"(I" - PH2Z)Z" (1" — PNS(IT - PN Z(Z" (1T - PHZ) 7,

where nt = 327 1(CIG; > 0). V, is the Eicker-White covariance matrix (see White
(1980)) of an OLS regression of (I* — PF)Y on (I — Pf)Z. This can be useful if the
researcher intends to estimate the standard errors using theorem 7.5 (see Li (2000)
for the asymptotic behavior of the estimator of the parametric term in the partially
linear model using series plugins). This work reports standard errors acquired instead
by a bootstrap approach, which will be described later. An important restriction on
the covariate list is that Z does not contain a constant term, because as can be seen
in equation (7.9), in the partially linear models the constant term cannot be identified
separately from 7(CIG).

For the local polynomial step, as described in equation (7.11), the choice parame-
ters are the kernel, the degree of the polynomial, and the bandwidth size. The kernel
used is Epanechnikov (rectangular and triangular kernels were also tested with virtu-

www.manaraa.com



65

ally identical results) and the polynomial degree is 3, although degrees 2 and 1 were
also tested with very similar results.

The bandwidth was chosen by a cross-validation technique (p. 15 in Li and Racine
(2007)), which consisted in the estimation of 7(CIG) for CIG = 1,...,20 by a local
polynomial regression of BW; — ZI'4 using only observations for which CIG; > 0, and
CIG; # CIG, for each bandwidth h = 2,3, ..., 20, which yielded the values 7,,(CIG),
h=1,...,20, CIG=1,...,20. The chosen h* is the one that satisfies

~~~~~

The bandwidth that performed the best was h = 2, corresponding to roughly 1.5%
of the observations such that CIC' > 0, followed by h = 3, h =10, h = 11 and h = 6,
corresponding to 5%, 26%, 60% and 19% of the observations such that CIG > 0
respectively.

As stated previously, the standard errors were estimated by a bootstrap approach,
which consisted in drawing 500 bootstrap samples of the data, and calculating 0 for
each of those independently, exactly in the same way described above. The resulting
standard deviations of the 500 values of @ are the standard errors reported in chapter
14.
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Chapter 14

Results

Tables 14.1 and 14.2 show the discontinuity test results for the birth weight and
the probability of LBW equations.

Discontinuity Test Results

Table 14.1: Birth Weight Table 14.2: P(Birth Weight<2500g)

C.V. I I C.V. I 11
h=2 | ] 196%*  121%* | h=2 . ] -0.043%*  -0.016*
(1.5%) (SE(0)) (14) (14) | (1.5%) ~ (SE(6)) (0.007)  (0.007)
h=3 0 194%*%  121%* | h=3 5 ] -0.043%*  -0.016*
(5%) (SE()) (17) (17) | (5%) (SE(0)) (0.008)  (0.008)
h=6 . ] 199%*  145% h=6 - ] -0.041*%  -0.019
(19%) (SE()) (52) (62) | (19%) (SE(8)) (0.017)  (0.027)
h=10 5 ] 178%*%  140%* | h=10 5 ] -0.037%*  -0.023
(26%) (SE(0)) (30) (32) | (26%) (SE(0)) (0.014)  (0.015)
h=11 ] 176%%  122%* | h=11 A ] -0.040%*  -0.022
(60%) (SE(0)) (25) (25) | (60%) ~ (SE(@)) (0.012) (0.013)

Tables 14.1 and 14.2: In the first column, A is the bandwidth, and the percentage in parenthesis
is the proportion of the sample of smokers used in the local polynomial regression for each value
of the bandwidth. C.V. shows the position of the bandwidth in the cross-validation results. 0 is
the discontinuity test statistic. The standard errors are the result of a bootstrap of the original
sample with 200 repetitions. Specification I has no covariates and II is the same specification used
in Almond et al. (2005) and described in the text. “**” means that the discontinuity test rejects at
the 99% confidence level, “*” means that the test rejects at the 95% confidence level, but not at the
99% confidence level.
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The results in table 14.1 present strong evidence of endogeneity for all specifica-
tions of birth weight and for all bandwidths. Table 14.2 indicates only weak evidence
of endogeneity for the main specification of the probability of LBW and the preferred
bandwidths (h = 2 and h = 3), and no evidence of endogeneity for larger bandwidths.
For h = 2 and h = 3, specification II is rejected with 95% confidence (p-value 1.96)
but not rejected with 99% (p-value 2.56) of confidence, and for all other bandwidths
specification II is not rejected even with 90% confidence.

Figures 14.1 and 14.2 depict the main results from tables 14.1 and 14.2, respec-
tively. Figure 14.1 shows the average birth weight for each level of CIG (black dots)
and two other marks at zero cigarettes. The hollow dot and the “x” point represent
the predicted birth weight at zero cigarettes using specification I and II respectively.
It can be seen in figure 14.1 that the covariates of specification II appear to help
reduce the discontinuity of actual birth weight and predicted birth weight, but not
enough for it to vanish.

Figure 14.2, which depicts the results for the probability of LBW analogously to
14.1, shows that the covariates of specification II help reduce the discontinuity of
actual LBW and predicted LBW to a third of its original value. The results for the
probability of LBW show that the discontinuity is small, so that if there is endogeneity
in specification II, it is of low importance for LBW.

One of the two crucial assumptions of the discontinuity test of endogeneity may
not be valid in the case of maternal smoking: namely that the effect of smoking on
birth weight or on the probability of LBW is continuous at zero cigarettes. If that
is the case, then one cannot disentangle the part of the discontinuity found in the
test that is due to the discontinuous treatment effect and the part that is due to
the endogeneity. In the results shown in this thesis, the discontinuity effects become
smaller when more covariates are added, which may be an indication that at least part
of the discontinuities are due to endogeneity. This suggests the necessity of better
data sets or of the search for quasi-experimental variations of smoking.

Another possibility that should be considered is that the data on smoking is too
roughly distributed. The unit of the variable CIG is “cigarettes per day,” and one
cigarette a day may be a significant amount of smoking. In this case, what seems
to be a large discontinuity in E(BW |CIG,Z) may be a disproportionately higher
treatment effect when comparing C'IG = 0 to CIG = 1 for the same value of Z. In
this case, an approach such as described in chapter 8 may be useful. Table 14.1 shows
a discontinuity in birth weight of 121 grams. Interpreting the same result, not as a
discontinuity, but as a discrete treatment effect inside of a selection on observables
approach, the effect of smoking one cigarette is a decrease of 121 grams in birth
weight. However, from Almond et al. (2005), the effect of smoking estimated in that
paper is of 200 grams, and smoking pregnant women smoke in average 9 cigarettes
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Figure 14.1: Results for birth weight, Specification II
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Figure 14.2: Results for the probability of LBW, Specification II
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Figures 14.1 and 14.2: vertical lines represent birth weight in grams and likelihood of LBW (birth
weight <2500 g) respectively. The solid dots represent averages among the pregnant mothers for
each level of daily cigarette consumption. The hollow dot is the local polynomial predictor at zero
cigarettes. The point “x” is the predictor after the effect of the covariates is removed. 6 is the
difference between the x and the solid points at CIG = 0.

per day. Identical results were
BW =m(CIG,Z) +¢

under the selection on observables assumption that ¢ is independent of C'IG and Z.
In fact, the effect of smoking 10 cigarettes daily is a decrease of 200 grams in the birth
weight. Hence, if selection on observables is to be believed, then the first cigarette
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has an effect 50% higher than the following 9 cigarettes.
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Appendix A

Theorems from part I

A.1 Statement and proof of result 3.1

Assumption A.1. Assume that
1. The matriz W (whose rows are the W 1(X; > 0)) has full column rank K + 1.

2. (ZF, Qi) are i.i.d.
3. E(e; | X;, Z;) =0, Var(e; | X;, Z;) = 0 < 00

4. E(9(Z;)?) < oo, Var(g(Z;)W;1(X; = 0)) < oo, and E(W,WI1(X; > 0)) is
finite and invertible.

5. Var(g(Z)E(X;" | X;* <0,Z;)1(X; =0)) < 0.
Theorem A.1. If assumption A.1 holds, then
V(0 — SE(g(Z)E(X;" | X" <0, Z)1(X; = 0))) 5 N (0,0%(p+ A) + 6%0?) .
Proof. Introducing some notation:
o h(Z;) =E(X;"| X" <0,2;)
o p:=E(h(Z)g(Z;)1(X; =0))
o w?:=Var(h(Z)g(Z;)1(X; = 0))
From A.1(1) and equation (2.4), it is possible to write

- % S g(Z)el(X, = 0) + 5% Z h(Z)g(Z)1(X; = 0)+

1. 1. —1 1
o Yo 9(ZyWlI(X; = 0)" <— S WIWIL(X; > 0)) - > Wieil(X; > 0)

=1 =1
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n n

(b= o) = \/ﬁiZg(Zi)ezl( +5\/‘iz Z)(X; = 0) — p+t

=1

+1£:g(Z¢)WiT1(X¢ ( ZWWT (X > 0)) (ﬁi;mal(& > 0)>

=1

{ﬁi 9(Z)1(X; = 0) + (n ZQ(ZOVViTl(Xi = 0)) (i Zn: WiW/ (X, > 0)>_ :

=1

- Wil(X; > 0)) +0(h(Z:)g(Z2:)1(X; = 0) — u)} (A.1)

Introducing further notation to make it easier to deal with the term inside the
sum in (A.1),

-1

o 4 21 9(Z)WI(X; = 0) (5 S, WWIL(X; > 0))

n

o A:=E(g(Z)WT1(X; = 0)EW,WT1(X; > 0))!
gi = 6(h(Z:)9(Z:)1(X; = 0) — p)

Vil = 0p) = Vi S [eilg(Z)1(X; = 0) + AWK, > 0) + g

_ \/ﬁrllzn:[ai(g(Zi)l(Xi = 0) + AWL(X, > 0)) + 9] + (4, — Ao S WX, > 0)

=1

By assumption A.1 (2-5), the random variables R; = ¢;[g(Z;)1(X; = 0)+ AW, 1(X; >
0)] + g; are i.i.d., E(R;) = 0, and Var(R;) = o*(p + A) + §?w? < oco. To see this,
observe that:

Var(R;) =E((e:[g(Z:)1(X; = 0) + AW 1(X; > 0)] + g:)°)
=E(e 2[9(2 )*1(X; = 0) + AW W 1(X; > 0)AT + 29(Z)1(X; = 0)1(X; > 0)AWi]+
+9; +2gieilg(Z ) ( =0) + AW;1(X; > 0)])
=c*(p+A+0)+ 0202(p+A)+52w2<oo

Therefore, /n+ S7 ) R; 4, N(0,0%(p+A)+02w?). The random variables e;W;1(X; >
0) arei.i.d., with E(g;W;1(X; > 0)) = 0, and Var(e;W;1(X; > 0)) = o)E(W, W 1(X; >
0)) < oo. Therefore y/nt S &, W;1(X; > 0) 4, N(0,0?E(W;WI1(X; > 0))). Since
A, — A2 0 (by assumption A.1(4), by Slutsky’s theorem the second term converges
in probability to zero. By Slutsky’s theorem again,
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V(0 —6p) 5 N, 6 (p + A) + 6%w?)

which gives the asymptotic distribution of the test statistic.
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Appendix B

Theorems from part 11

B.1 Identification theorems

B.1.1 Theorem 6.1:

The proof requires the following assumption:

Assumption B.1.

lim [ E(y|x,z,q)dF(Q|X =z, 2) :/E(y]xo,z,q) lilmdF(Q|X:x,Z),
xlzo

x|xo
lim [ E(y|2,2,q) dF(Q| X =2.2) = [E(y|a0,2.¢) lim dF(Q| X = ,2).
xTxo z|To

Proof. First, observe that assumption 6.1 (1) assures that all E(Y | X = =g, %),
limy ., E(Y | X = z,Z) and limg,, E(Y | X = 2,Z) are identified for all z € Z,,,
unless x is a boundary point, in which case either the right or left limit will not be
identified. However, item (2) assures A(Z) will be identified, because when one of
its parts is not identified, « is such that the part is null. Identification of # follows
because GG is known and v is identified.

From equation (6.1),

9:/G({/E(Y\X:xO,Z,Q)dF(Qm:xO,Z)—

—alim [ E(Y | X, Z,Q)dF(Q|X =z, 72)—

zlxo .

—(1—a)lim [ E(y|z,zq)dF(Q|X =, Z)},z)dl/(z)

zTxo

If X is exogenous, [E(y|x,z,q)dF(Q| X =z, Z2)=EY | X =2,2) [dF(Q| X =
2,Z) =E(Y | X = x,Z), hence 0 = [ G([E(y |z = o, 2) —alim, ,, E(Y | X = z,2)—
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(1 —a)limg,, E(Y | X =z, Z)],z)dl/(z). From assumption 6.1 (2), E(Y | X =z, 2)
is continuous, and therefore § = [ G (0, z) dv(z) = 0. O

B.1.2 Proof of Remark 6.4:

f continuous in X at xy implies that for a given value of z, and ¢, Ve > 0,34, , > 0
such that |z — zo| < 6,, = |fv(z, 2,9,¢) — fy(xo,2,¢,€)| < e. Hence,

E(y|2,20) ~E(y]o = 70, 2.0)| =| [ fr(w.2,0,6) dF(e |2, 2,0)
— [ Fr(@o.2,0,8) AP (e |2 = 20, 20)
=| (@ 2.0.9) = Fr@o.2.0.9) dF(e)
< [ 1 (@,2.0.2) = fr(wo, 2, .€)| dF(e) < e

B.2 Estimation in the linear case

B.2.1 Theorem 7.1:

First, observe that

Sr—ot] | Een, X XTU(X, > x0)] 0
Vi l 0" — o~ ] N { 0 (L XXX, < m)]

vr Z{iizléiiiﬁﬂ

Assumptions 7.1 (1), assumption 7.2 (3), the LLN and the continuous mapping the-
orem guarantee that [% S XXX > xo)]fl L E(XGXT1(X; > 30))~! and
(Lo XoXT1(X; < xo)rl L E(XiXT1(X; < x0))~". Since the ¢; are functions of
Y;, X; and Z;, they are i.i.d. Moreover,
COU(XZ' €; 1(Xz > l‘o), X € 1(Xz < ZE())) = E(Xz €; 1<Xz > Io))E(Xz €; 1(Xl < ZE()))
=E(X;E(e; | X;) 1(X; > 20)) E(X; E(e; | X;) 1(X; < 2)) = 0.

Therefore, assumptions 7.1 (1) and 7.2 (2) and the vector CLT imply that

X € 1(X; > z9)
\/_ Z{X@ (Xil’o)

([0 ]t [ PEEE it < |):

d
—
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Finally, Slutsky’s theorem implies that

o e R (1 i R

)

By the continuous mapping theorem,

A

av/n(dt =0 + (1 — a)vn(d~ —67) L N(0,v),
where
v=0" (E(X; X! 1(X; > 20)) " + (1 — 0)*0’E(X, X[ 1(X; < 20))7").

By assumption 7.1 item (1), assumption 7.2 item (1) and the strong LLN,
E(9(Z:) | Xi = x0) & E(g(Z:) | Xi = xo) and E(g(Z:)Z; | Xi = x0) = E(9(Z:) Zi | X; =
xg), and since the limits are scalar, the convergence holds for the vector. By Slutsky’s
theorem,

VB, 5 N(0, Vp).

It is easy to establish the joint convergence of A, and B, with the same arguments
as above. Observe that since (07 —¢") and (6~ —07) use only data for which X; # x,

Cov(A,, B,) =E ( é (A(Z)g(Z)1(X; = o) — 0)[zo 9(Z;)Z:1(X; = xo)]) :

Zo

E (a0 =) +(1—a)(6 —07)) =0 (B.1)

because the weighted least squares estimators " and ¢~ are unbiased. Equation
(B.1) and the continuous mapping theorem imply that

V(0 = 0) = /nA, — VnB, 5 N(0,Va + Vp).

B.2.2 Theorem 7.3

The convergence of P (ﬁvi < c,\) to A as n — oo under Hy is a trivial conse-
B

quence of theorem 7.2. Under Hi,

ey . i—o \ (V- vT3)
(ﬁTV—B”*)‘ (ﬁ(w>‘ Ve

> CazV VB . \/ﬁ 0
VVi+ Vg VVi+ Vg -
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From theorem 7.2 and the continuous mapping theorem, 1/ Ve—V5 & 0, and there-

) CA(\/ VB*\/@) d
\/VA+VB> - VVa+Vp -
N(0,1). Since —\/ﬁ\/ﬁ — —00 as n — 00, it is easy to prove that

P(\/ﬁ( 6—6 )_C)‘<\/g_\/%) > Ve _\/ﬁ 0

— — 00.
VVatVs VatVs VatVs \/VA+VB> Lasn — oo

fore, by the same theorem and Slutsky’s theorem, \/ﬁ(

Under the alternatives 6//n, the same manipulations as above yield

0 -0/ /n o (VU =V758) 70
P(“ﬁ@g”):@ ﬁ(m)‘ Wit ST

(Vi v75) 4

= — N(0,1), the result of the theorem follows

and since y/n (5‘_51@) —

immediately.

B.3 Estimation in the partially linear case

B.3.1 Theorem 7.4:

From equation (7.11), equation (7.8) can be rewritten as

B, =B} + B?
Bl :=E(9(Z) | Xi = o) (a7 (20)™ — 775 (20)™] + (1 — @) [F~ (o)™ — 77 (w9)"™])
B = o (B(9(Z)Z:| X; = 20)" —E(9(Z) | X, = z0) ] (X"D*X) X" D*Z).

S =)+ (1 )| (B(9(20) 2] X = o)

~E(g(Z) | X, = 20) f(XTDX) XD Z) (5 — ).

It will be shown that B! converges at the rate v/nh and (A, + B?) converges at
the rate \/n, and therefore Var(v/nhB2) = O(h). The consequence of the disparity
between the rates is that only the variance of B} will affect the asymptotic variance
of 0. However, in order to study the influence of B? in small samples, the results
will consider variance terms that are at least O(h), which is the same to say that any
term which is o(h) will be considered irrelevant in the variance calculations and not
taken into account.

For the distribution of B!, observe that 7% (zg)™ and 7~ (o)™ are local polyno-
mial regressions of Y; — ZI'y™ and Y; — Z'y~ on X; using only observations for which
X; > z¢ and X; < z( respectively. These are standard local polynomial regressions
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of the kind used in Porter (2003) for the estimation of the sides of the discontinuity
in the regression discontinuity design. There is one crucial difference: Porter assumes
that the running variable X; has a density function in a neighborhood of zy. Since
here P(X; = z() > 0, this is no longer possible. However, by assumption 7.3 (3) the
distribution function F'(x |z # x) has a density function in [27,z¢) N (zo, 2], and
it is equal to ;
pla) 1= i\

P(X; # o)
Let the random variables X;" be defined in [z, 00) N X with density function ¢(z)* =
o(z) in (zg, 2] and o(z 0)+ = limg ., p(x). Then P(X] = X;1(X; > zq)) = 1.
Define X; analogously. Though in theorem 3 Porter assumes that the X; have a
density function in an open set NV 3 zg, all the equations use either X;1(X; > zg)
or X;1(X; < zy), and the results only require that X;1(X; > z() has a density in
[z, 27) and that X;1(X; < x) has a density in (z~, x]. Hence, theorem 3 in Porter
(2003) can be applied to X; and X; , and the results will be valid to X;1(X; > ()
and X;1(X; < z) respectively with probability one. Assumption 7.3 (4)-(7) complete
the requirements of the theorem. Let n := 3%, 1(X; # ), Porter shows that

— (7t (zo) ™ — 7H(zo)t — B 4 { 0 } Vtoo0
" < 7 (wo) "™ — 77 (m0)' - B, N 0/’ 0 V- (B.2)
where if p is odd,

. 7_—i—(p—i—l) (l’o)lim

[;H- — hPt
" (p+ 1)!

et Ag Lo +o(h7H) = B

n

and if p is even,

- 7—+(p+1 lim @/ T B
+(p+2 hm

P+ o(xo)t

N +(p+2)( O)hm ATy N (hp+2) _ g

(p_|_ 2)| €1 Llpt1TO — ~n

and analogously for B, . Observe that E(c?(X;, Z;) | X; = z, X; # x9) = o*(x) for

all X in (xg,2"). Hence, if p is even or odd,

Var(e; | X =z
p(zo)*

=P(X; # 20) V7,

+(p+1 hm ,I'
— }pt2 lT ( ) ( U) ‘| {Aal(Tp+2—A1AoTp+1)

2 l
)elTAng Agter = P(X; # xo)me{AalQ Agter

o+
[ P(x0)!
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and analogously for V. By assumption 7.1 (1) and the LLN, 7/n £ P(X; # 2¢) > 0
and by the Continuous Mapping theorem and Slutsky’s theorem,

i SO A

T (iL'o — T (fﬂo 0 V-

Also, by assumption 7.1 item (1), assumption 7.2 item (1) and the LLN, E(g(Z;) | X; =
ro) & E(g(Z;)| Xi = 20). Hence, Slutsky’s theorem and the continuous mapping
theorem imply

Vh(By — B,) % N (0.E(9(Z) | X = w)? [22V* + (1 - a)V7] ).

For determining the asymptotic distribution of B2 + A,,, denote

=l (XTDTX)'X'D*Z,
I'X"D*X)"'X*D~Z,
b:{ = [E(Q(Zi)zi | X = 930)T - E(Q(Zz) | X = x0) aﬂ )

by = (1— ) [E(9(Z)Zi | X = 0)" — B(g(Z:) | Xi = 20) ay ],

then
At — oyt

2+ A, =0t =)+ 0, (AT =)+ A= [b) b 1]{'7‘—7».
A,

First, observe that assumptions 7.3 (3) and (6)-(8) and Theorem 3 in Porter (2003)
guarantee that a % E(Z; | X; = z0)" and a;, & E(Z;| X; = 20)". By assumption 7.1
item (1), assumption 7.3 item (1) and the LLN, E(g(Z;) | X; = z0) & E(9(Z) | X; =
o), and E(g(Z:) Z; | X; = x0) & E(g(Z;)Z; | X; = x). Hence, by Slutsky’s theorem,
BT b7 1] 5 [aCT (1 —«)CT 1]. From assumption 7.3 (2) and Slutsky’s
theorem,

0 Vi o0 0
V(B2 +A4,) L[ aCT (1—a)CT 1]N| |0 0 VvV 0
0 0 0 Vy

~ N (0, ’CIVIC, + (1 —a)’)Ctyv C_+V, 4) - (B.4)

Since vnh(B? 4+ A,) & 0, Slutsky’s theorem guarantees the joint convergence
of vVnh(B} — B,)) and vnh(B? + A,). The only remaining task is to calculate the
covariance nh Cov(B! — B,,, B2 + A,,) up to the O(h) level. This result requires that
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one return to the proof of theorem 3 in Porter (2003), p. 44., and refer to equations
(17) to (22) in that paper. B! can be rewritten as
19 22
Vnh(B,, — B,) =€ |aD, > E;+(1—a)D,_ Y E
s=17 5=20
where Fj is the numerator in equation (s) in p.44 in Porter (2003), the notation
translates here as

d; = 1(X; > x), Z; = =X, D,y = (n ' XTD*X)™!, By =B,

- 1
Vit =1HX) — mH(0)t — 7T W (20) (X — wp) — - — il ®) (20)1(X; — x0)P + &5,
p!
. 1 . .
(@) = 7 (@) = |70+ PO ) G =) - 0 )G = )
and the terms with the “-” sign are defined analogously. Hence,

19
1
Enh@ov( — B, B2+ A,) = [ > —(Cov( D, E,,v/n(B:+ A,))
s=17
22

+(1—a) > (Cov(e{Dn_Es, Vn(B: + A ))]
s=20

We will deal with the first term, for s = 17,18 and 19. The second term, for s = 20, 21

and 22 is analogous.

;Ecmel Dos By Ji(B2 + Ay)) = jﬁ«:owel D,. By, JAB2)+

1
+ —Cov(el' D, . E,,\/nA,
Coule] Dy B i)
A, is composed exclusively by observations for which X; = xq, while D, F; is
composed exclusively by observations for which X; > xy. They are therefore in-
dependent, and since E(A,) = 0, ﬁ@ov(er{DwES,\/ﬁAn) = 0. B> =bf(yt -
v+ b, (% — 7). The term b, (5~ — v~) is composed exclusively of observa-
tions for which X; = xy and X; > z(. It is therefore independent of D, E;, and
ﬁ@ov(elTDnJrEs, b,v/n(3~ —~7)) = 0. The term Ejg is not random, and there-
fore, ﬁ@ov(el D, Eqg, b ( —~1)) = 0. For the term FEig, we will use Holder’s
inequality:
1

ﬁ@OU(e?Dn—i—EléB,b: n(3t =) = E(eT Dyy Ersbt v/n(3+ — 1))
Doy B E(E VA =)
(€1 D+ Ens)*) PE(n(by; (5 —~*))")"?

(er
E(eq
E(
E(ley Dt ErsDE(|by V(5 = 7))

<
+
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Porter shows that Var(el D, 4 Eig) = o(h~®*V), and from assumption 7.3 (2),
E(n(bf (3 —4*))?)12 is uniformly bounded. Hence, T-Couv(ef Dyy Brg, b v/n(3+ —

7)) = o(1).
The only remaining term is (Cov(e1 D,y B, b /n(3T —~T)). Tt is necessary to
have a better understanding of 7+ byt —") =05 (21 2) 25 (Y . — ZyAT), and

for observations such that X; > xg,
Yie = Zopy™ =Y, = ZIv" =3 UK, > o) TH(Y; — Z]7)
=1
= i)+ € — ZlX > xp) T+( (X)) +€))
Let T* = [T;51(X; > x0)] the n x n matrix with entry T; ;1(X; > 20, X; > xp) in line
i, column j, 75 = (77(Xy),...,77(X,,))", and P = b/ (Z1Z,)~"Z%. Then b} (5" —
YY) = PF(IT = T7)(7" +¢), where I* = Diag{1(X1 > x),..., 1(X, > x0)}. Also,

e1D,+E7 = V/nhP;"e. Hence, since it can be easily shown that E(\/LﬁeipDnJrEn) =
o(1) and since b} \/n(3" —~")) is uniformly bounded,

jECmf(el Dyy Evr bE/A(3* — 7)) = nE(Pe(3* — 7F)THT)

(Pre)br(3* — ") = (Pre) (3 =)0t = Pre(r?T + D) (1T — TH)TPIT
= E((Pfe) b (7" — ")) = E(Pf&(I — TH)"PT)

where ¢ = Diag{ef, ..., e5}. Define E(e® | X) = Diag{E(¢; | X; = X1),...,E(e] | X; =
X,)} and E(e?| X) = Diag{E(e? | X; = X1},...,E(¢?| X; = X,)). We can then
rewrite €2(IT —TH)"PHT as

PI(I* = T%)é = bf(2{2,) ' 2" (1" = T*)(I* = T*)é
= bH(#02,) 7| 27¢ —E(Z | X)T¢ — ZTE(E | X)+
+E(Z| X)TE(€ | X) — (B(Z | X) - E(Z| X)) e~
- ZN(E(E ] X) - E(Z] X)) + (B(Z | X) - E(Z| X))"E(€ | X)+
+E(Z| X)(E( | X) - E(@|X))|.
Hence
nPre (It —TH)"P = [Pﬁ&Z — PrEéR(Z|X) — PTRE(E | X)Z

ZT7.\ "
+PYE(E | X)E(Z] X)] (+T+> b7 + U,
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11, (X — d .
< 30 () 106> 01| s B2 | X) — B2 X0)|
i=1 s=1 1
11 (X — d .
- > Ek ( . 550) 1(X; > 0)X;Z;| > sup ‘E(ef | Xi) — E(eF | Xo)| |6
i=1 s=1
11 Xz — X ~ 9
+ ﬁ;ﬁk( . > 1(X; > 0)X; sup ‘E(ez | X)) -
d A
Y sup [E(Z: | X,) — E(Z | X3)| b
s=1
11 Xl — X
el (R ) 10 > oxiEz )
d A
Y sup|B(€] | Xi) — B(e) | X2)| (B3]
s=1 7
Because the terms with the kernels can easily be shown to be bounded, sup; [|[E(e2 | X;)
is asymptotically bounded, because sup;, ‘ Y H(X > mo) Tihed — E(e] | X)|| = op(1),

and the other terms are o0,(1) by assumption 7.3 (2), U, = 0,(1).
Finally, by assumption 7.3 (2),

717
<+T+> L Var(Z; | X;)

= nP eI = TP B a(E(6 2| Xi = o) —
—E(& | Xi = 20)'E(Z: Z: | Xi = m)") C*
= a 0T (X, (v0)") teser (o)t

Therefore,
a —Cov(ef' D,y By, /(B2 + A,)) — o CT (2. (20)') "t eser (o)
and the result for s = 20,21 and 22 is analogous.

B.3.2 Theorem 7.5:

The convergence of V follows from observing that aCy = bt and (1 — a)C_ = b
and its convergence is established in the previous section. Theorem 4 in Porter (2003)
guarantees the convergence of VT and V™, as long as 62(x)™* — 02(x)"™* and
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G(0)"™5 — P(0)"™* as n — oco. The latter is guaranteed by item (3) in assumtpion

7.3. We show the former for s = “4”, the result for s = “—" is analogous.
E((Y; — ZF4T)? | Xy = 2o)t = el (XTWX)"IXT DT RT (B.5)
—e'(XT'DX) X' DT R*
— I (XTDHX)IXTDH(RT — RY) (B.6)

where R = (Rf,...,R)", Rf = (Y; — Z'y")%. We begin by showing that the
second term is 0,(1). Notice that

Rf = Rf = (Y; = Z]47)* = (Y; = Z]7")°

)

= [(Y; = ZI4") + (Vi = 2] 2T (3T —7T)

7 (2

Let

Ut =el'(XTDHX)™

-

Il
—

1(X; > x0) k (

(2

-

s
I
_

N X, —
Ut =el (XTDX) 'S 1(X; > ) K ( x”) (Y; — ZIyNZ!

Then the second term in (B.5) is
T(XTDYX)'XTDH(RT — RY) = (UT + UN (3T —4%)
From equation (7.11) and the proof of theorem 7.4, it’s easy to see that
Ut + U 52 (% (20)") E(Zi | X = x0)!

and since 4+ —~* 2 0 by assumption 7.3 item (2), the second term in (B.5) is 0,(1).

The first term in (B.5) is a local polynomial regression of (Y; — ZFyT)? on X; at
x9. Hence, from assumption 7.3 items (2)-(7) and theorem 4.1 in Ruppert and Wand
(1994),

I(XTDHX)IXTDYRT & lim E(Y; — ZIy")? | X; =) = lim E(ef | X; = z) = 0*(wo)*.
xlTo xlTo

The proof for the convergence of é,.(x)"™ is analogous. It is only necessary to

observe that

E(Zi(Yi — Ziy")? | Xi) — E(Zi | X)E((Yi — Ziv")* | Xi) =
=E(Zic; | Xi) — E(Zi | Xi)E(] | X3).
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B.3.3 Theorem 7.6:
Observe that
0 b—0—B8, CA(\/T—\/V_O JnhB,
P<m&>cx)m(m( o= >_ o B
\/Ee>

> Cy —

VVu

From theorem 7.5 and the continuous mapping theorem, v/ V, — VYV, & 0. More-
over, vVnhB, — 0, since vnhh?*' — 0. Hence, by theorems 7.4 and Slutsky’s,

er(VV—vn)

Vinh (508 ) — 20X Ty a4 Af(0,1). Under Hy, 6 = 0, and the first
result follows immediately. Under Hy, since h — 0, V, — o*V + (1 — a)?V, and

therefore — \/\/’;”):hg — —o00, from which the second result follows.

Under the alternatives 6/v/nh, observe that

i i_opii-5 (V- s,
P(mm >c,\> :]P’<m< oA ) — oA + NoR

1 1 o
+0 — > c) — .
(\/vn a2V + (1— a)2v;> RN O @W;)

. 1 1
and since 6 o \/a2Vi+(1a)2VT>
the theorem follows.

2.0, by Slutsky’s theorem the third result of

B.4 Estimation in the nonparametric case

B.4.1 Theorem 7.7:

The proof is similar to the proof of the convergence of the nonparametric term
in the partially linear case. The essence of the argument is that since the support if
dF(Z;) is finite, all arguments can be done separately for each possible value of Z;.
We begin by deriving the asymptotic distribution of f(zm)+. This is a standard local
polynomial regression of the kind used in Porter (2003) for the estimation of one side
of the discontinuity in the regression discontinuity design. There are two differences.
First, IA“(Z”””)Jr uses only data for which Z; = 2™. Second, the results in Porter assume
that the variable X; has a density function in a neighborhood of xy3. Assumption 7.4
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item (1) implies that P(X; = x| Z; = 2™) > 0, so this is no longer possible. However,
from item (2), the conditional distribution function

P(Xi<w, Zi =2") —P(X; <20, Zi = 2™)

PXi Sw|Xi>w0, Zi =2") = P(X; > g, Z; = 2™

has a density function in (zg,2"), and it is equal to

d ) L ,m
om(z) == pPXisz, Zi=2 ).
IP)(XZ >, Zz = Zm)

Though theorem 3 in Porter dependens on the existence of a density function in
(7, x1), it is not dependent on the existence of a density function at the discontinuity
point xg, as long as the right limit of ¢,,(z) at xy exists. From assumption 7.4 item
(2), this is true and

¢(:L'0, Zm)l
]P)(Xl >, Z; = Zm).

‘:Om(a’fﬂ)l = alclfal:}) Pm(x) ==

Assumption 7.4 (3)-(6) complete the requirements of Theorem 3 in Porter (2003). Let
n;“n = ?:1 l(XZ > .To)].(ZZ = Zm),

Vhng, (D™ = B),) S N (0, Vi) (B.7)
where if p is odd,
~ +(p+1) m\lim
Bt — prtl Iy (0, 2™) €1TA61Tp+1 +o(h”+1) _ B;L,n

" (p+1)!

and if p is even,

+(p+1) m\lim , ./ m\]
~ Xo, 2 To, 2 _
BY = h*? [fy (o, )7 (0, 27) ] eipliol(Tp+2 — A AT 1)

e P A
+(p+2) m\lim
Zo, 2 _
| (p(+°2), L2 AT Y + o)
f+(P+1) T ,zm lim ¢/ T 7Zm 1 B
= (p(—l—ol)! ) gb((x(? zm))i 1 Ao (Tpiz = MiAgTpya)

+ { s %m)lim} er Ay Tpe1 +o(h"?) = By,
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Also, observe that E(o?(X;, Z;) | Xs = o, X; > 2, Z; = 2™) = o2 ,(z) for all X in
(x0,2T). Hence, if p is even or odd,

02(%)l

gb(l‘o, Zm)l

- 2 !
Vr—; = me{/\alg Aalel = P(XZ > Zo, Zz == Zm>
0

TA—-1 -1

By assumption 7.1 (1) and the LLN, nt/n % P(X; > zy, Z; = 2™), and by the
continuous mapping theorem and Slutsky’s theorem,

Vah (D" =B ) S N (0, V).

The exact same reasoning applied to f‘(zm)_ will yield the equivalent result for
the left limit. Moreover, the result in Porter (2003) states the joint convergence of
Vnh (T(z™)* = B, ) and v/nh (['(2™)~ = B;,,,) by the Cramer Wold device. The
I'(z™)* are independent for all m, and also independent from the I'(z™)~, because
they are built using different parts of the sample, hence by continuous mapping the-
orem,

avnh (B(z™)* = BE,) + (1 — a)av/nh (D(z")" - B;.,) %
4N (O, ”VE 4+ (1 — 04)2V;L) .

Assumption 7.1 (1) and (2), the LLN and Slutsky’s theorem imply that 7" 2 p™
jointly for all m. By Slutsky’s theorem again, vnh (B, — B,) =

[ avnh (D(z")* = Bf,) + (1 — a)avnh ([(z")~ - B,) ]
= (b, - 4] s -
[ avnh (f(zM)+ — B;\%n) + (1 - a)am (f(zM)_ — B]Q’n) J
i>./\/'(0, [ pL, . M ] Diag{e®V) + (1 —a)®V, }[ b, .- P }T)

~N(0,V)

The joint convergence of vnhB, and vnhA, is guaranteed by Slutsky’s theorem,
because vVnhA, %> 0. In order to derive the small sample covariance, the same
considerations as in the correlation between the I'(2™)* and the T'(z™)~ for all m
apply here, namely that they are independent from A, because they are built using
different observations. A, may be correlated with B,,. Equation (7.4) and lemma ??
imply that nhE(A,B,) = VhO (h**') = hO(h?*'/2) which is of order smaller than
h, and therefore the correlation os negligible. Hence, the small sample variance is

V + hVa+o(h) =V,

which concludes the demonstration.
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B.4.2 Theorem 7.8:

The previous section showed that p7° EiN Pp- It only remains to prove that
62 (20, 2™t L 0% (20, ™)' and 6% (g, 2™)' L 0% (zg, 2™)! for all m. In the beginning
of section 7.7 in the appendix, it is shown that the restriction to the observations
such that X; € (zg,2%) and Z; = 2™ has a density function in (zq, %) equal to
©m(x). The proof will use Masry (1996)’s result on the uniform convergence of the
multivariate local polynomial. From assumption 7.4 and Theorem 6 in that article,

if Zz = Zm,

sup ‘f+(Xi; Zi) - f(Xz‘, Zi)

z€(zo,zT)

= sup f+(Xia Zm) - f(Xza zm)‘

z€(zo,xT)

o ()" e
nh

almost surely. Define D)} = {i; X; > x¢ and Z; = 2™}, then by the continuous

mapping theorem,
1/2
=0 ((loghn> - th) a.s.
n

5'2(1‘0, Zm)i = Pl—t_m,aco

sup (&7 - &
ieD;,

Let R=(e3,...,2)T,

’rTn

R+ P, ..

(R—R)

The first term is a simple local polynomial regression of the €? onto X; at xo, and by
theorem 3 in Porter (2003), it is a consistent estimator of lim, |, E(¢? | X; = x, Z; =
2™) = 0?(xg, 2™)*. For the second term, let (v); denote the i-th element of vector v,
and since (P, ,, ). is different from zero only if i € Dy},

. XTwe X\ XIW: (R— R)
+ o x r,m T x x,m
‘Pl,m,xo(R - R)’ - ( nh ) nh
| XX\ XKW (R~ R
b nh h
XTWws X\ XTWe )
< x r,m* T x x,m P~ . 2
<) | -
< ngj,mxx - ngzi,m ‘(AS)Z 2

Observe that (ng;;zm> =1(i € D) +k (2522) (ao+a1 (Xi — ) ++ - - +a,(X; —20)P).

From assumption 7.4 (5), the kernel has bounded support, and since k is continuous,
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there exists k such that |k(u)| < k for all u. Let u™ := sup, {u; k (u) # 0}, define
TP = x9 + u™**h. Hence,

XTws 1-
(52522 [ < 8 Dol fllag = ol 4+ el = !
1_
T llao]  Jane™ |+ ay ("] )
C
< 5 for n large enough.
oo xrwe, X\ o
‘ Lm0 (B <E (T) ise%%‘(ei) — €

By the convergence of Py, mOR and the continuous mapping theorem, there exists a

(p+1) x (p+ 1) positive definite matrix M such that for all § > 0,

XTWs X\ »
P22} Al ss) —o0

nh
Hence,
C ~8
= [Pl (R=R)|[ < 5 (M7 + 001 )-Se%%‘(ei)l@?
3/2
[%) +hP1 O, (1) as.
1/3

From assumption 7.5 (3), hn'/ 3(log n)~'? — oo, and from assumption 7.4 (7), h —
0. Hence,

analogous.

(R — R)’ = 0. The proof of the convergence of 62(zg,2™)! is

B.4.3 Theorem 7.9:
Analogously to the proof of theorem 7.6,

P<m 0 >CA> :p<m(“5
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From theorem 7.8 and the continuous mapping theorem, v/ V, — vV, £ 0. Moreover,

if vnhh?*tt — 0, vVnhB},, — 0 and vnhB,,, — 0. Hence vnhB, — 0. Hence, by
n C \A}n_m

theorems 7.7 and Slutsky’s, v'nh (0_9_6" — A<\/;V— ) + \/\’}T’;—Bn 4, N(0,1). Under

Hy, 6 =0, and the first result follows inmmediately. Under Hy, since h — 0, V,, — V,

and therefore —% — —o0, from which the second result follows.

Under the alternatives 6/v/nh, observe that

i\ o opr-5,) o
P(M\/f}—n>c,\)—ﬁb<\/ﬁ< oA >

=
|
=
~—
5
>
=

() )

1

and since 6

) 2, 0, by Slutsky’s theorem the third result of the theorem
follows.

L
Vv

/N
3

B.5 Theorems when X is discrete
B.5.1 Theorem 8.2:
Let 6 := (8,977, and 6 = (WTDW)'WTDY =: (3,47)T, then
Vils - ) = (LW e N+\{$0}))_1 VAT 3 Wil (X, € A\ {ao}
Assumption 8.3 guarantees that

Vit SWEL(X, € N\ {ro}) £ V(0.2 EWI 1K, € N\ (b)),
and that
L WAV € N\ o) 2 BV € N\ (o)
The continuous mapping theorem and Slutsky’s theorem then guarantee that

V(s —8) L N (0,2 E(WiW1(X; € NP\ {xo})) 7).
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By the partitioned inverse, let [-]; ; denote the element in row ¢ and column j in the
matrix “”. It is direct to derive:

1. (XT"DX = XT"DZ(Z" D7) Z"X) ' = 0

b=
2. [EWWILG e N\ (zo}) ], , = (BWVT1(X, e M)~

~E(XZTL(Y € M) - E(ZZT1(X: € N E(ZXTL(XG e N9))

V(B —8) L N (0, 2E(W,WIL(X, e N*)TY).

which completes the proof of \/ﬁ(é —0) 4N (0, V). The convergence in probability
of 62 follows form the convergence of the OLS variance estimator, and the conver-
gence of V follows from the partitioned inverse reasoning applied to the proof of the
convergence of the OLS variance estimator.

B.5.2 Theorem 8.3:

S 1=

) ) [V
]P’<9<bL—c,\/2 or 6 > by + ¢y ;> —
R R [V
:P<9<bL—cA/z n)+P<9>bU+C,\/2 E)

P(é < b — C/\/z\/g) = IP(\/ﬁ(é — 6) + C)\/Q(\/; — \/V) < \/ﬁ(bL - 9) — CA/QW)
(B.8)

e

By theorem 8.2, the continuous mapping theorem and Slutsky’s theorem, /n(f —
) + c,\/g(\/; — V) L N(0,V) Under Hy, 6§ < by. For all € > 0, let z. = ®~1(e),
then there exist ng € N such that n > ng implies \/n(by — 0)/VV — cyjp < 2,

and therefore, (B.8) < e. Hence, P(é < by — C/\/Q\/g) — 0. The proof that

P( 6 > by + ¢y /2 \/g> — 0 is similar, and so are the proofs to the other parts of

the theorem.

www.manharaa.com




94

Appendix C

Empirical Appendix

The following table contains the frequencies of data per number of cigarettes
smoked daily. 80% of the observations did not smoke, and 19% smoke from one
to 20 cigarettes a day. Hence 94% of the smoking observations smoke up to 20
cigarettes, and 60% smoke up to 10. There is a high concentration of observations
at CIG = 5,10,15,25,..., but it is not immediate to determine whether this is the
result of rounding on reporting, which would induce measurement error in the variable
CIG@G, or actual higher frequencies of smoking in multiples of 5. Given that a common
pack of cigarettes contains 20 cigarettes, at least part of the higher frequencies at the
5’s may be due to a preference for consuming cigarettes in quarter pack units.

Section 11 does not account for measurement error in the variable C'IG. However,
if the distribution of the measurement error conditional on C'IG and Z is discontin-
uous at C'IG = 0, the discontinuity test will detect its presence.

Table C.1: Data Frequency
CIG Frequency Percent Cumulative

0 393,939 80.70 80.70
1 1,469 0.30 81.00
2 2,986 0.61 81.61
3 3,759 0.77 82.38
4 2,890 0.59 82.98
o 6,838 1.40 84.38
6 2,618 0.54 84.91
7 1,758 0.36 85.27
8 1,644 0.34 85.61
9 335 0.07 85.68
10 32,720 6.70 92.38
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CIG Frequency Percent Cumulative
11 117 0.02 92.41
12 801 0.16 92.57
13 396 0.08 92.65
14 128 0.03 92.68
15 4,568 0.94 93.61
16 93 0.02 93.63
17 39 0.01 93.64
18 259 0.05 93.69
19 19 0.00 93.70
20 25,333 5.19 98.89
21 49 0.01 98.90
22 30 0.01 98.90
23 39 0.01 98.91
24 36 0.01 98.92
25 417 0.09 99.00
26 7 0.00 99.01
27 3 0.00 99.01
28 12 0.00 99.01
29 2 0.00 99.01
30 2,993 0.61 99.62
31 4 0.00 99.62
32 3 0.00 99.62
33 2 0.00 99.62
34 5 0.00 99.62
35 97 0.02 99.64
36 5 0.00 99.65
37 2 0.00 99.65
38 1 0.00 99.65
39 0 0.00 99.65
40 1,474 0.30 99.95

> 40 254 0.05 100.00

Total 488,144
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